8 A multiplicative group \(Q\) of order 8 has elements \(\left\{ e , p , p ^ { 2 } , p ^ { 3 } , a , a p , a p ^ { 2 } , a p ^ { 3 } \right\}\), where \(e\) is the identity. The elements have the properties \(p ^ { 4 } = e\) and \(a ^ { 2 } = p ^ { 2 } = ( a p ) ^ { 2 }\).
- Prove that \(a = p a p\) and that \(p = a p a\).
- Find the order of each of the elements \(p ^ { 2 } , a , a p , a p ^ { 2 }\).
- Prove that \(\left\{ e , a , p ^ { 2 } , a p ^ { 2 } \right\}\) is a subgroup of \(Q\).
- Determine whether \(Q\) is a commutative group.