OCR FP3 2009 June — Question 8

Exam BoardOCR
ModuleFP3 (Further Pure Mathematics 3)
Year2009
SessionJune
TopicGroups

8 A multiplicative group \(Q\) of order 8 has elements \(\left\{ e , p , p ^ { 2 } , p ^ { 3 } , a , a p , a p ^ { 2 } , a p ^ { 3 } \right\}\), where \(e\) is the identity. The elements have the properties \(p ^ { 4 } = e\) and \(a ^ { 2 } = p ^ { 2 } = ( a p ) ^ { 2 }\).
  1. Prove that \(a = p a p\) and that \(p = a p a\).
  2. Find the order of each of the elements \(p ^ { 2 } , a , a p , a p ^ { 2 }\).
  3. Prove that \(\left\{ e , a , p ^ { 2 } , a p ^ { 2 } \right\}\) is a subgroup of \(Q\).
  4. Determine whether \(Q\) is a commutative group.