2 It is given that the set of complex numbers of the form \(r \mathrm { e } ^ { \mathrm { i } \theta }\) for \(- \pi < \theta \leqslant \pi\) and \(r > 0\), under multiplication, forms a group.
- Write down the inverse of \(5 \mathrm { e } ^ { \frac { 1 } { 3 } \pi \mathrm { i } }\).
- Prove the closure property for the group.
- \(Z\) denotes the element \(\mathrm { e } ^ { \mathrm { i } \gamma }\), where \(\frac { 1 } { 2 } \pi < \gamma < \pi\). Express \(Z ^ { 2 }\) in the form \(\mathrm { e } ^ { \mathrm { i } \theta }\), where \(- \pi < \theta < 0\).