OCR FP3 2009 June — Question 2

Exam BoardOCR
ModuleFP3 (Further Pure Mathematics 3)
Year2009
SessionJune
TopicGroups

2 It is given that the set of complex numbers of the form \(r \mathrm { e } ^ { \mathrm { i } \theta }\) for \(- \pi < \theta \leqslant \pi\) and \(r > 0\), under multiplication, forms a group.
  1. Write down the inverse of \(5 \mathrm { e } ^ { \frac { 1 } { 3 } \pi \mathrm { i } }\).
  2. Prove the closure property for the group.
  3. \(Z\) denotes the element \(\mathrm { e } ^ { \mathrm { i } \gamma }\), where \(\frac { 1 } { 2 } \pi < \gamma < \pi\). Express \(Z ^ { 2 }\) in the form \(\mathrm { e } ^ { \mathrm { i } \theta }\), where \(- \pi < \theta < 0\).