CAIE P3 (Pure Mathematics 3) 2012 June

Question 1
View details
1 Expand \(\frac { 1 } { \sqrt { } ( 4 + 3 x ) }\) in ascending powers of \(x\), up to and including the term in \(x ^ { 2 }\), simplifying the coefficients.
Question 2
View details
2 Solve the equation \(\ln ( 2 x + 3 ) = 2 \ln x + \ln 3\), giving your answer correct to 3 significant figures.
Question 3
View details
3 The parametric equations of a curve are $$x = \sin 2 \theta - \theta , \quad y = \cos 2 \theta + 2 \sin \theta$$ Show that \(\frac { \mathrm { d } y } { \mathrm {~d} x } = \frac { 2 \cos \theta } { 1 + 2 \sin \theta }\).
Question 4
View details
4 The curve with equation \(y = \frac { \mathrm { e } ^ { 2 x } } { x ^ { 3 } }\) has one stationary point.
  1. Find the \(x\)-coordinate of this point.
  2. Determine whether this point is a maximum or a minimum point.
Question 5
View details
5 In a certain chemical process a substance \(A\) reacts with another substance \(B\). The masses in grams of \(A\) and \(B\) present at time \(t\) seconds after the start of the process are \(x\) and \(y\) respectively. It is given that \(\frac { \mathrm { d } y } { \mathrm {~d} t } = - 0.6 x y\) and \(x = 5 \mathrm { e } ^ { - 3 t }\). When \(t = 0 , y = 70\).
  1. Form a differential equation in \(y\) and \(t\). Solve this differential equation and obtain an expression for \(y\) in terms of \(t\).
  2. The percentage of the initial mass of \(B\) remaining at time \(t\) is denoted by \(p\). Find the exact value approached by \(p\) as \(t\) becomes large.
Question 6
View details
6 It is given that \(\tan 3 x = k \tan x\), where \(k\) is a constant and \(\tan x \neq 0\).
  1. By first expanding \(\tan ( 2 x + x )\), show that $$( 3 k - 1 ) \tan ^ { 2 } x = k - 3$$
  2. Hence solve the equation \(\tan 3 x = k \tan x\) when \(k = 4\), giving all solutions in the interval \(0 ^ { \circ } < x < 180 ^ { \circ }\).
  3. Show that the equation \(\tan 3 x = k \tan x\) has no root in the interval \(0 ^ { \circ } < x < 180 ^ { \circ }\) when \(k = 2\).
Question 7
View details
7
\includegraphics[max width=\textwidth, alt={}, center]{e2cc23d2-f3ac-488b-97e1-79e2a98a87ba-3_421_885_251_628} The diagram shows part of the curve \(y = \cos ( \sqrt { } x )\) for \(x \geqslant 0\), where \(x\) is in radians. The shaded region between the curve, the axes and the line \(x = p ^ { 2 }\), where \(p > 0\), is denoted by \(R\). The area of \(R\) is equal to 1 .
  1. Use the substitution \(x = u ^ { 2 }\) to find \(\int _ { 0 } ^ { p ^ { 2 } } \cos ( \sqrt { } x ) \mathrm { d } x\). Hence show that \(\sin p = \frac { 3 - 2 \cos p } { 2 p }\).
  2. Use the iterative formula \(p _ { n + 1 } = \sin ^ { - 1 } \left( \frac { 3 - 2 \cos p _ { n } } { 2 p _ { n } } \right)\), with initial value \(p _ { 1 } = 1\), to find the value of \(p\) correct to 2 decimal places. Give the result of each iteration to 4 decimal places.
Question 8
View details
8 Let \(\mathrm { f } ( x ) = \frac { 4 x ^ { 2 } - 7 x - 1 } { ( x + 1 ) ( 2 x - 3 ) }\).
  1. Express \(\mathrm { f } ( x )\) in partial fractions.
  2. Show that \(\int _ { 2 } ^ { 6 } \mathrm { f } ( x ) \mathrm { d } x = 8 - \ln \left( \frac { 49 } { 3 } \right)\).
Question 9
View details
9 The lines \(l\) and \(m\) have equations \(\mathbf { r } = 3 \mathbf { i } - 2 \mathbf { j } + \mathbf { k } + \lambda ( - \mathbf { i } + 2 \mathbf { j } + \mathbf { k } )\) and \(\mathbf { r } = 4 \mathbf { i } + 4 \mathbf { j } + 2 \mathbf { k } + \mu ( a \mathbf { i } + b \mathbf { j } - \mathbf { k } )\) respectively, where \(a\) and \(b\) are constants.
  1. Given that \(l\) and \(m\) intersect, show that $$2 a - b = 4 .$$
  2. Given also that \(l\) and \(m\) are perpendicular, find the values of \(a\) and \(b\).
  3. When \(a\) and \(b\) have these values, find the position vector of the point of intersection of \(l\) and \(m\).
Question 10
View details
10
  1. The complex numbers \(u\) and \(w\) satisfy the equations $$u - w = 4 \mathrm { i } \quad \text { and } \quad u w = 5$$ Solve the equations for \(u\) and \(w\), giving all answers in the form \(x + \mathrm { i } y\), where \(x\) and \(y\) are real.
    1. On a sketch of an Argand diagram, shade the region whose points represent complex numbers satisfying the inequalities \(| z - 2 + 2 \mathrm { i } | \leqslant 2 , \arg z \leqslant - \frac { 1 } { 4 } \pi\) and \(\operatorname { Re } z \geqslant 1\), where \(\operatorname { Re } z\) denotes the real part of \(z\).
    2. Calculate the greatest possible value of \(\operatorname { Re } z\) for points lying in the shaded region.