7
\includegraphics[max width=\textwidth, alt={}, center]{e2cc23d2-f3ac-488b-97e1-79e2a98a87ba-3_421_885_251_628}
The diagram shows part of the curve \(y = \cos ( \sqrt { } x )\) for \(x \geqslant 0\), where \(x\) is in radians. The shaded region between the curve, the axes and the line \(x = p ^ { 2 }\), where \(p > 0\), is denoted by \(R\). The area of \(R\) is equal to 1 .
- Use the substitution \(x = u ^ { 2 }\) to find \(\int _ { 0 } ^ { p ^ { 2 } } \cos ( \sqrt { } x ) \mathrm { d } x\). Hence show that \(\sin p = \frac { 3 - 2 \cos p } { 2 p }\).
- Use the iterative formula \(p _ { n + 1 } = \sin ^ { - 1 } \left( \frac { 3 - 2 \cos p _ { n } } { 2 p _ { n } } \right)\), with initial value \(p _ { 1 } = 1\), to find the value of \(p\) correct to 2 decimal places. Give the result of each iteration to 4 decimal places.