CAIE P3 2012 June — Question 9

Exam BoardCAIE
ModuleP3 (Pure Mathematics 3)
Year2012
SessionJune
TopicVectors: Lines & Planes

9 The lines \(l\) and \(m\) have equations \(\mathbf { r } = 3 \mathbf { i } - 2 \mathbf { j } + \mathbf { k } + \lambda ( - \mathbf { i } + 2 \mathbf { j } + \mathbf { k } )\) and \(\mathbf { r } = 4 \mathbf { i } + 4 \mathbf { j } + 2 \mathbf { k } + \mu ( a \mathbf { i } + b \mathbf { j } - \mathbf { k } )\) respectively, where \(a\) and \(b\) are constants.
  1. Given that \(l\) and \(m\) intersect, show that $$2 a - b = 4 .$$
  2. Given also that \(l\) and \(m\) are perpendicular, find the values of \(a\) and \(b\).
  3. When \(a\) and \(b\) have these values, find the position vector of the point of intersection of \(l\) and \(m\).