9 The lines \(l\) and \(m\) have equations \(\mathbf { r } = 3 \mathbf { i } - 2 \mathbf { j } + \mathbf { k } + \lambda ( - \mathbf { i } + 2 \mathbf { j } + \mathbf { k } )\) and \(\mathbf { r } = 4 \mathbf { i } + 4 \mathbf { j } + 2 \mathbf { k } + \mu ( a \mathbf { i } + b \mathbf { j } - \mathbf { k } )\) respectively, where \(a\) and \(b\) are constants.
- Given that \(l\) and \(m\) intersect, show that
$$2 a - b = 4 .$$
- Given also that \(l\) and \(m\) are perpendicular, find the values of \(a\) and \(b\).
- When \(a\) and \(b\) have these values, find the position vector of the point of intersection of \(l\) and \(m\).