8.
\begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{27ac35ba-1969-4a37-a7c5-f4741c9c59a8-28_570_728_264_609}
\captionsetup{labelformat=empty}
\caption{Figure 1}
\end{figure}
Figure 1 shows a sketch of the curves with polar equations
$$\begin{array} { l l }
r = 2 \sin \theta & 0 \leqslant \theta \leqslant \pi
r = 1.5 - \sin \theta & 0 \leqslant \theta \leqslant 2 \pi
\end{array}$$
The curves intersect at the points \(P\) and \(Q\).
- Find the polar coordinates of the point \(P\) and the polar coordinates of the point \(Q\).
The region \(R\), shown shaded in Figure 1, is enclosed by the two curves.
- Find the exact area of \(R\), giving your answer in the form \(p \pi + q \sqrt { 3 }\), where \(p\) and \(q\) are rational numbers to be found.