Edexcel AEA (Advanced Extension Award) 2013 June

Question 1
View details
1.In the binomial expansion of $$\left( 1 + \frac { 12 n } { 5 } x \right) ^ { n }$$ the coefficients of \(x ^ { 2 }\) and \(x ^ { 3 }\) are equal and non-zero.
(a)Find the possible values of \(n\) .
(4)
(b)State,giving a reason,which value of \(n\) gives a valid expansion when \(x = \frac { 1 } { 2 }\)
(2)
Question 2
View details
2.(a)Use the formula for \(\sin ( A - B )\) to show that \(\sin \left( 90 ^ { \circ } - x \right) = \cos x\)
(b)Solve for \(0 < \theta < 360 ^ { \circ }\) $$2 \sin \left( \theta + 17 ^ { \circ } \right) = \frac { \cos \left( \theta + 8 ^ { \circ } \right) } { \cos \left( \theta + 17 ^ { \circ } \right) }$$
Question 3
View details
3.The lines \(L _ { 1 }\) and \(L _ { 2 }\) have equations given by
\(L _ { 1 } : \quad \mathbf { r } = \left( \begin{array} { c } - 7
7
1 \end{array} \right) + \lambda \left( \begin{array} { c } 2
0
- 3 \end{array} \right)\) and \(L _ { 2 } : \quad \mathbf { r } = \left( \begin{array} { c } 7
p
- 6 \end{array} \right) + \mu \left( \begin{array} { c } 10
- 4
- 1 \end{array} \right)\)
where \(\lambda\) and \(\mu\) are parameters and \(p\) is a constant.
The two lines intersect at the point \(C\) .
(a)Find
(i)the value of \(p\) ,
(ii)the position vector of \(C\) .
(b)Show that the point \(B\) with position vector \(\left( \begin{array} { c } - 13
11
- 4 \end{array} \right)\) lies on \(L _ { 2 }\) . The point \(A\) with position vector \(\left( \begin{array} { c } - 7
7
1 \end{array} \right)\) lies on \(L _ { 1 }\) .
(c)Find \(\cos ( \angle A C B )\) ,giving your answer as an exact fraction. The line \(L _ { 3 }\) bisects the angle \(A C B\) .
(d)Find a vector equation of \(L _ { 3 }\) .
Question 4
View details
4.A sequence of positive integers \(a _ { 1 } , a _ { 2 } , a _ { 3 } , \ldots\) has \(r\) th term given by $$a _ { r } = 2 ^ { r } - 1$$ (a)Write down the first 6 terms of this sequence.
(b)Verify that \(a _ { r + 1 } = 2 a _ { r } + 1\)
(c)Find \(\sum _ { r = 1 } ^ { n } a _ { r }\)
(d)Show that \(\frac { 1 } { a _ { r + 1 } } < \frac { 1 } { 2 } \times \frac { 1 } { a _ { r } }\)
(e)Hence show that \(1 + \frac { 1 } { 3 } + \frac { 1 } { 7 } + \frac { 1 } { 15 } + \frac { 1 } { 31 } + \ldots < 1 + \frac { 1 } { 3 } + \left( \frac { 1 } { 7 } + \frac { \frac { 1 } { 2 } } { 7 } + \frac { \frac { 1 } { 4 } } { 7 } + \ldots \right)\)
(f)Show that \(\frac { 31 } { 21 } < \sum _ { r = 1 } ^ { \infty } \frac { 1 } { a _ { r } } < \frac { 34 } { 21 }\)
Question 5
View details
5.In this question u and v are functions of \(x\) .Given that \(\int \mathrm { u } \mathrm { d } x , \int \mathrm { v } \mathrm { d } x\) and \(\int \mathrm { uv } \mathrm { d } x\) satisfy $$\int \text { uv } \mathrm { d } x = \left( \int \mathrm { u } \mathrm {~d} x \right) \times \left( \int \mathrm { v } \mathrm {~d} x \right) \quad \text { uv } \neq 0$$ (a)show that \(1 = \frac { \int \mathrm { u } \mathrm { d } x } { \mathrm { u } } + \frac { \int \mathrm { v } \mathrm { d } x } { \mathrm { v } }\) Given also that \(\frac { \int \mathrm { u } \mathrm { d } x } { \mathrm { u } } = \mathrm { sin } ^ { 2 } x\),
(b)use part(a)to write down an expression,in terms of \(x\) ,for \(\frac { \int \mathrm { v } \mathrm { d } x } { \mathrm { v } }\) ,
(c)show that $$\frac { 1 } { \mathrm { u } } \frac { \mathrm { du } } { \mathrm {~d} x } = \frac { 1 - 2 \sin x \cos x } { \sin ^ { 2 } x }$$ (d)hence use integration to show that \(\mathrm { u } = A \mathrm { e } ^ { - \cot x } \operatorname { cosec } ^ { 2 } x\) ,where \(A\) is an arbitrary constant.
(e)By differentiating \(\mathrm { e } ^ { \tan x }\) find a similar expression for v .
Question 6
View details
6.(a)Starting from \([ \mathrm { f } ( x ) - \lambda \mathrm { g } ( x ) ] ^ { 2 } \geqslant 0\) show that \(\lambda\) satisfies the quadratic inequality $$\left( \int _ { a } ^ { b } [ \operatorname { g } ( x ) ] ^ { 2 } \mathrm {~d} x \right) \lambda ^ { 2 } - 2 \left( \int _ { a } ^ { b } \mathrm { f } ( x ) \mathrm { g } ( x ) \mathrm { d } x \right) \lambda + \int _ { a } ^ { b } [ \mathrm { f } ( x ) ] ^ { 2 } \mathrm {~d} x \geqslant 0$$ where \(a\) and \(b\) are constants and \(\lambda\) can take any real value.
(2)
(b)Hence prove that $$\left[ \int _ { a } ^ { b } \mathrm { f } ( x ) \mathrm { g } ( x ) \mathrm { d } x \right] ^ { 2 } \leqslant \left[ \int _ { a } ^ { b } [ \mathrm { f } ( x ) ] ^ { 2 } \mathrm {~d} x \right] \times \left[ \int _ { a } ^ { b } [ \mathrm {~g} ( x ) ] ^ { 2 } \mathrm {~d} x \right]$$ (c)By letting \(\mathrm { f } ( x ) = 1\) and \(\mathrm { g } ( x ) = \left( 1 + x ^ { 3 } \right) ^ { \frac { 1 } { 2 } }\) show that $$\int _ { - 1 } ^ { 2 } \left( 1 + x ^ { 3 } \right) ^ { \frac { 1 } { 2 } } \mathrm {~d} x \leqslant \frac { 9 } { 2 }$$ (d)Show that \(\int _ { - 1 } ^ { 2 } x ^ { 2 } \left( 1 + x ^ { 3 } \right) ^ { \frac { 1 } { 4 } } \mathrm {~d} x = \frac { 12 \sqrt { } 3 } { 5 }\)
(e)Hence show that $$\frac { 144 } { 55 } \leqslant \int _ { - 1 } ^ { 2 } \left( 1 + x ^ { 3 } \right) ^ { \frac { 1 } { 2 } } \mathrm {~d} x$$
Question 7
View details
7. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{8bd0bc33-e69e-4e51-aae7-288810c5db07-6_643_1374_173_351} \captionsetup{labelformat=empty} \caption{Figure 1}
\end{figure} Figure 1 shows a sketch of the curve \(C _ { 1 }\) with equation \(y = \mathrm { f } ( x )\) where $$\mathrm { f } ( x ) = \frac { x } { 3 } + \frac { 12 } { x } \quad x \neq 0$$ The lines \(x = 0\) and \(y = \frac { x } { 3 }\) are asymptotes to \(C _ { 1 }\). The point \(A\) on \(C _ { 1 }\) is a minimum and the point \(B\) on \(C _ { 1 }\) is a maximum.
  1. Find the coordinates of \(A\) and \(B\). There is a normal to \(C _ { 1 }\), which does not intersect \(C _ { 1 }\) a second time, that has equation \(x = k\), where \(k > 0\).
  2. Write down the value of \(k\). The point \(P ( \alpha , \beta ) , \alpha > 0\) and \(\alpha \neq k\), lies on \(C _ { 1 }\). The normal to \(C _ { 1 }\) at \(P\) does not intersect \(C _ { 1 }\) a second time.
  3. Find the value of \(\alpha\), leaving your answer in simplified surd form.
  4. Find the equation of this normal. The curve \(C _ { 2 }\) has equation \(y = | \mathrm { f } ( x ) |\)
  5. Sketch \(C _ { 2 }\) stating the coordinates of any turning points and the equations of any asymptotes. The line with equation \(y = m x + 1\) does not touch or intersect \(C _ { 2 }\).
  6. Find the set of possible values for \(m\).