3.(a)(i)Write down the binomial series expansion of
$$\left( 1 + \frac { 2 } { n } \right) ^ { n } \quad n \in \mathbb { N } , n > 2$$
in powers of \(\left( \frac { 2 } { n } \right)\) up to and including the term in \(\left( \frac { 2 } { n } \right) ^ { 3 }\)
(ii)Hence prove that,for \(n \in \mathbb { N } , n \geqslant 3\)
$$\left( 1 + \frac { 2 } { n } \right) ^ { n } \geqslant \frac { 19 } { 3 } - \frac { 6 } { n }$$
(b)Use the binomial series expansion of \(\left( 1 - \frac { x } { 4 } \right) ^ { \frac { 1 } { 2 } }\) to show that \(\sqrt { 3 } < \frac { 7 } { 4 }\)
$$\mathrm { f } ( x ) = \left( 1 + \frac { 2 } { x } \right) ^ { x } - 3 ^ { \frac { x } { 6 } } \quad x \in \mathbb { R } , x > 0$$
Given that the function \(\mathrm { f } ( x )\) is continuous and that \(\sqrt [ 6 ] { 3 } > \frac { 6 } { 5 }\)
(c)prove that \(\mathrm { f } ( x ) = 0\) has a root in the interval[9,10]