Approximation for small x

Show that an expression is approximately equal to a polynomial for small values of x, often involving simplification to find a constant k.

8 questions

CAIE P3 2015 June Q3
3 Show that, for small values of \(x ^ { 2 }\), $$\left( 1 - 2 x ^ { 2 } \right) ^ { - 2 } - \left( 1 + 6 x ^ { 2 } \right) ^ { \frac { 2 } { 3 } } \approx k x ^ { 4 }$$ where the value of the constant \(k\) is to be determined.
Edexcel AEA 2020 June Q3
3.(a)(i)Write down the binomial series expansion of $$\left( 1 + \frac { 2 } { n } \right) ^ { n } \quad n \in \mathbb { N } , n > 2$$ in powers of \(\left( \frac { 2 } { n } \right)\) up to and including the term in \(\left( \frac { 2 } { n } \right) ^ { 3 }\)
(ii)Hence prove that,for \(n \in \mathbb { N } , n \geqslant 3\) $$\left( 1 + \frac { 2 } { n } \right) ^ { n } \geqslant \frac { 19 } { 3 } - \frac { 6 } { n }$$ (b)Use the binomial series expansion of \(\left( 1 - \frac { x } { 4 } \right) ^ { \frac { 1 } { 2 } }\) to show that \(\sqrt { 3 } < \frac { 7 } { 4 }\) $$\mathrm { f } ( x ) = \left( 1 + \frac { 2 } { x } \right) ^ { x } - 3 ^ { \frac { x } { 6 } } \quad x \in \mathbb { R } , x > 0$$ Given that the function \(\mathrm { f } ( x )\) is continuous and that \(\sqrt [ 6 ] { 3 } > \frac { 6 } { 5 }\)
(c)prove that \(\mathrm { f } ( x ) = 0\) has a root in the interval[9,10]
OCR C4 2013 June Q10
10
  1. Show that \(\frac { x } { ( 1 - x ) ^ { 3 } } \approx x + 3 x ^ { 2 } + 6 x ^ { 3 }\) for small values of \(x\).
  2. Use this result, together with a suitable value of \(x\), to obtain a decimal estimate of the value of \(\frac { 100 } { 729 }\).
  3. Show that \(\frac { x } { ( 1 - x ) ^ { 3 } } = - \frac { 1 } { x ^ { 2 } } \left( 1 - \frac { 1 } { x } \right) ^ { - 3 }\). Hence find the first three terms of the binomial expansion of \(\frac { x } { ( 1 - x ) ^ { 3 } }\) in powers of \(\frac { 1 } { x }\).
  4. Comment on the suitability of substituting the same value of \(x\) as used in part (ii) in the expansion in part (iii) to estimate the value of \(\frac { 100 } { 729 }\).
AQA FP3 2012 January Q2
2 Find $$\lim _ { x \rightarrow 0 } \left[ \frac { \sqrt { 4 + x } - 2 } { x + x ^ { 2 } } \right]$$ (3 marks)
OCR MEI Paper 1 2022 June Q4
4 Using an appropriate expansion show that, for sufficiently small values of \(x\), \(\frac { 1 - x } { ( 2 + x ) ^ { 2 } } \approx \frac { 1 } { 4 } - \frac { 1 } { 2 } x + \frac { 7 } { 16 } x ^ { 2 }\).
SPS SPS FM Pure 2021 June Q6
6.
  1. Use the binomial expansion, in ascending powers of \(x\), to show that $$\sqrt { ( 4 - x ) } = 2 - \frac { 1 } { 4 } x + k x ^ { 2 } + \ldots$$ where \(k\) is a rational constant to be found. A student attempts to substitute \(x = 1\) into both sides of this equation to find an approximate value for \(\sqrt { 3 }\).
  2. State, giving a reason, if the expansion is valid for this value of \(x\).
AQA AS Paper 2 2021 June Q4
2 marks
4
  1. Find the binomial expansion of \(( 1 - 2 x ) ^ { 5 }\) in ascending powers of \(x\) up to and including the term in \(x ^ { 2 }\) 4
  2. Find the first two non-zero terms in the expansion of $$( 1 - 2 x ) ^ { 5 } + ( 1 + 5 x ) ^ { 2 }$$ in ascending powers of \(x\).
    4
  3. Hence, use an appropriate value of \(x\) to obtain an approximation for \(0.998 ^ { 5 } + 1.005 ^ { 2 }\) [2 marks]
    \(5 A B C\) is a triangle. The point \(D\) lies on \(A C\).
    \(A B = 8 \mathrm {~cm} , B C = B D = 7 \mathrm {~cm}\) and angle \(A = 60 ^ { \circ }\) as shown in the diagram.
    \includegraphics[max width=\textwidth, alt={}, center]{f87d1b36-26db-4a0b-b9ec-d7d82a396aba-06_604_978_486_532}
AQA Paper 1 2022 June Q6
6
  1. Find the first two terms, in ascending powers of \(x\), of the binomial expansion of $$\left( 1 - \frac { x } { 2 } \right) ^ { \frac { 1 } { 2 } }$$ 6
  2. Hence, for small values of \(x\), show that $$\sin 4 x + \sqrt { \cos x } \approx A + B x + C x ^ { 2 }$$ where \(A , B\) and \(C\) are constants to be found.