4.
\begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{4d5b914c-28b2-4485-a42e-627c95fa16e2-16_581_961_251_552}
\captionsetup{labelformat=empty}
\caption{Figure 2}
\end{figure}
Figure 2 shows a sketch of the parabola with equation \(y = \frac { 1 } { 2 } x ( 10 - x ) , 0 \leqslant x \leqslant 10\) This question concerns rectangles that lie under the parabola in the first quadrant.The bottom edge of each rectangle lies along the \(x\)-axis and the top left vertex lies on the parabola.Some examples are shown in Figure 2.
Let the \(x\) coordinate of the top left vertex be \(a\) .
(a)Explain why the width,\(w\) ,of such a rectangle must satisfy \(w \leqslant 10 - 2 a\)
(b)Find the value of \(a\) that gives the maximum area for such a rectangle.
Given that the rectangle must be a square,
(c)find the value of \(a\) that gives the maximum area for such a square.
Given that the area of the rectangles is fixed as 36
(d)find the range of possible values for \(a\) .
\includegraphics[max width=\textwidth, alt={}, center]{4d5b914c-28b2-4485-a42e-627c95fa16e2-16_2255_50_311_1980}