OCR MEI C4 (Core Mathematics 4)

Question 1
View details
1 In Fig. 6, OAB is a thin bent rod, with \(\mathrm { OA } = a\) metres, \(\mathrm { AB } = b\) metres and angle \(\mathrm { OAB } = 120 ^ { \circ }\). The bent rod lies in a vertical plane. OA makes an angle \(\theta\) above the horizontal. The vertical height BD of B above O is \(h\) metres. The horizontal through A meets BD at C and the vertical through A meets OD at E . \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{9ac55ae6-7a7f-47d0-a363-92da179be4ca-1_427_898_464_683} \captionsetup{labelformat=empty} \caption{Fig. 6}
\end{figure}
  1. Find angle BAC in terms of \(\theta\). Hence show that $$h = a \sin \theta + b \sin \left( \theta - 60 ^ { \circ } \right) .$$
  2. Hence show that \(h = \left( a + \frac { 1 } { 2 } b \right) \sin \theta - \frac { \sqrt { 3 } } { 2 } b \cos \theta\). The rod now rotates about O , so that \(\theta\) varies. You may assume that the formulae for \(h\) in parts (i) and (ii) remain valid.
  3. Show that OB is horizontal when \(\tan \theta = \frac { \sqrt { 3 } b } { 2 a + b }\). In the case when \(a = 1\) and \(b = 2 , h = 2 \sin \theta - \sqrt { 3 } \cos \theta\).
  4. Express \(2 \sin \theta - \sqrt { 3 } \cos \theta\) in the form \(R \sin ( \theta - \alpha )\). Hence, for this case, write down the maximum value of \(h\) and the corresponding value of \(\theta\).
Question 2
View details
2 Express \(3 \cos \theta + 4 \sin \theta\) in the form \(R \cos ( \theta - \alpha )\), where \(R > 0\) and \(0 < \alpha < \frac { - \pi } { 2 }\).
Hence solve the equation \(3 \cos \theta + 4 \sin \theta = 2\) for \(\quad - \pi \leqslant \theta \leqslant \pi\).
Question 3
View details
3 Show that the equation \(\operatorname { cosec } x + 5 \cot x = 3 \sin x\) may be rearranged as $$3 \cos ^ { 2 } x + 5 \cos x - 2 = 0$$ Hence solve the equation for \(0 ^ { \circ } \leqslant x \leqslant 360 ^ { \circ }\), giving your answers to 1 decimal place.
Question 4
View details
4 Part of the track of a roller-coaster is modelled by a curve with the parametric equations $$x = 2 \theta - \sin \theta , \quad y = 4 \cos \theta \quad \text { for } 0 \leqslant \theta \leqslant 2 \pi$$ This is shown in Fig. 8. B is a minimum point, and BC is vertical. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{9ac55ae6-7a7f-47d0-a363-92da179be4ca-3_591_1437_433_391} \captionsetup{labelformat=empty} \caption{Fig. 8}
\end{figure}
  1. Find the values of the parameter at A and B . Hence show that the ratio of the lengths OA and AC is \(( \pi - 1 ) : ( \pi + 1 )\).
  2. Find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\) in terms of \(\theta\). Find the gradient of the track at A .
  3. Show that, when the gradient of the track is \(1 , \theta\) satisfies the equation $$\cos \theta - 4 \sin \theta = 2$$
  4. Express \(\cos \theta - 4 \sin \theta\) in the form \(R \cos ( \theta + \alpha )\). Hence solve the equation \(\cos \theta - 4 \sin \theta = 2\) for \(0 \leqslant \theta \leqslant 2 \pi\).
Question 5
View details
5 Express \(4 \cos \theta - \sin \theta\) in the form \(R \cos ( \theta + \alpha )\), where \(R > 0\) and \(0 < \alpha < \frac { 1 } { 2 } \pi\).
Hence solve the equation \(4 \cos \theta - \sin \theta = 3\), for \(0 \leqslant \theta \leqslant 2 \pi\).