OCR MEI FP1 2008 June — Question 9

Exam BoardOCR MEI
ModuleFP1 (Further Pure Mathematics 1)
Year2008
SessionJune
TopicRoots of polynomials

9 Two complex numbers, \(\alpha\) and \(\beta\), are given by \(\alpha = 2 - 2 \mathrm { j }\) and \(\beta = - 1 + \mathrm { j }\).
\(\alpha\) and \(\beta\) are both roots of a quartic equation \(x ^ { 4 } + A x ^ { 3 } + B x ^ { 2 } + C x + D = 0\), where \(A , B , C\) and \(D\) are real numbers.
  1. Write down the other two roots.
  2. Represent these four roots on an Argand diagram.
  3. Find the values of \(A , B , C\) and \(D\).