OCR MEI FP1 (Further Pure Mathematics 1) 2008 June

Question 1
View details
1
  1. Write down the matrix for reflection in the \(y\)-axis.
  2. Write down the matrix for enlargement, scale factor 3, centred on the origin.
  3. Find the matrix for reflection in the \(y\)-axis, followed by enlargement, scale factor 3 , centred on the origin.
Question 2
View details
2 Indicate on a single Argand diagram
  1. the set of points for which \(| z - ( - 3 + 2 \mathrm { j } ) | = 2\),
  2. the set of points for which \(\arg ( z - 2 \mathrm { j } ) = \pi\),
  3. the two points for which \(| z - ( - 3 + 2 \mathrm { j } ) | = 2\) and \(\arg ( z - 2 \mathrm { j } ) = \pi\).
Question 3
View details
3 Find the equation of the line of invariant points under the transformation given by the matrix \(\mathbf { M } = \left( \begin{array} { r r } - 1 & - 1
2 & 2 \end{array} \right)\).
Question 4
View details
4 Find the values of \(A , B , C\) and \(D\) in the identity \(3 x ^ { 3 } - x ^ { 2 } + 2 \equiv A ( x - 1 ) ^ { 3 } + \left( x ^ { 3 } + B x ^ { 2 } + C x + D \right)\).
Question 5
View details
5 You are given that \(\mathbf { A } = \left( \begin{array} { l l l } 1 & 2 & 4
3 & 2 & 5
4 & 1 & 2 \end{array} \right)\) and \(\mathbf { B } = \left( \begin{array} { r r r } - 1 & 0 & 2
14 & - 14 & 7
- 5 & 7 & - 4 \end{array} \right)\).
  1. Calculate AB.
  2. Write down \(\mathbf { A } ^ { - 1 }\).
Question 6
View details
6 The roots of the cubic equation \(2 x ^ { 3 } + x ^ { 2 } - 3 x + 1 = 0\) are \(\alpha , \beta\) and \(\gamma\). Find the cubic equation whose roots are \(2 \alpha , 2 \beta\) and \(2 \gamma\), expressing your answer in a form with integer coefficients.
Question 7
View details
7
  1. Show that \(\frac { 1 } { 3 r - 1 } - \frac { 1 } { 3 r + 2 } \equiv \frac { 3 } { ( 3 r - 1 ) ( 3 r + 2 ) }\) for all integers \(r\).
  2. Hence use the method of differences to find \(\sum _ { r = 1 } ^ { n } \frac { 1 } { ( 3 r - 1 ) ( 3 r + 2 ) }\). Section B (36 marks)
Question 8
View details
8 A curve has equation \(y = \frac { 2 x ^ { 2 } } { ( x - 3 ) ( x + 2 ) }\).
  1. Write down the equations of the three asymptotes.
  2. Determine whether the curve approaches the horizontal asymptote from above or below for
    (A) large positive values of \(x\),
    (B) large negative values of \(x\).
  3. Sketch the curve.
  4. Solve the inequality \(\frac { 2 x ^ { 2 } } { ( x - 3 ) ( x + 2 ) } < 0\).
Question 9
View details
9 Two complex numbers, \(\alpha\) and \(\beta\), are given by \(\alpha = 2 - 2 \mathrm { j }\) and \(\beta = - 1 + \mathrm { j }\).
\(\alpha\) and \(\beta\) are both roots of a quartic equation \(x ^ { 4 } + A x ^ { 3 } + B x ^ { 2 } + C x + D = 0\), where \(A , B , C\) and \(D\) are real numbers.
  1. Write down the other two roots.
  2. Represent these four roots on an Argand diagram.
  3. Find the values of \(A , B , C\) and \(D\).
Question 10
View details
10
  1. Using the standard formulae for \(\sum _ { r = 1 } ^ { n } r ^ { 2 }\) and \(\sum _ { r = 1 } ^ { n } r ^ { 3 }\), prove that $$\sum _ { r = 1 } ^ { n } r ^ { 2 } ( r + 1 ) = \frac { 1 } { 12 } n ( n + 1 ) ( n + 2 ) ( 3 n + 1 )$$
  2. Prove the same result by mathematical induction.