| Exam Board | CAIE |
| Module | P3 (Pure Mathematics 3) |
| Year | 2007 |
| Session | June |
| Topic | Harmonic Form |
5
- Express \(\cos \theta + ( \sqrt { } 3 ) \sin \theta\) in the form \(R \cos ( \theta - \alpha )\), where \(R > 0\) and \(0 < \alpha < \frac { 1 } { 2 } \pi\), giving the exact values of \(R\) and \(\alpha\).
- Hence show that \(\int _ { 0 } ^ { \frac { 1 } { 2 } \pi } \frac { 1 } { ( \cos \theta + ( \sqrt { } 3 ) \sin \theta ) ^ { 2 } } \mathrm {~d} \theta = \frac { 1 } { \sqrt { } 3 }\).