OCR MEI FP1 2006 January — Question 8

Exam BoardOCR MEI
ModuleFP1 (Further Pure Mathematics 1)
Year2006
SessionJanuary
TopicComplex Numbers Arithmetic
TypeGiven one complex root, find all roots

8 You are given that the complex number \(\alpha = 1 + \mathrm { j }\) satisfies the equation \(z ^ { 3 } + 3 z ^ { 2 } + p z + q = 0\), where \(p\) and \(q\) are real constants.
  1. Find \(\alpha ^ { 2 }\) and \(\alpha ^ { 3 }\) in the form \(a + b \mathrm { j }\). Hence show that \(p = - 8\) and \(q = 10\).
  2. Find the other two roots of the equation.
  3. Represent the three roots on an Argand diagram.