Given one complex root, find all roots

A question is this sub-type if and only if it provides exactly one complex (non-real) root of a polynomial with real coefficients and asks to find all remaining roots using the conjugate root theorem and polynomial division or factorization.

14 questions

Edexcel FP1 2012 January Q5
5. The roots of the equation $$z ^ { 3 } - 8 z ^ { 2 } + 22 z - 20 = 0$$ are \(z _ { 1 } , z _ { 2 }\) and \(z _ { 3 }\).
  1. Given that \(z _ { 1 } = 3 + \mathrm { i }\), find \(z _ { 2 }\) and \(z _ { 3 }\).
  2. Show, on a single Argand diagram, the points representing \(z _ { 1 } , z _ { 2 }\) and \(z _ { 3 }\).
OCR MEI FP1 2006 January Q8
8 You are given that the complex number \(\alpha = 1 + \mathrm { j }\) satisfies the equation \(z ^ { 3 } + 3 z ^ { 2 } + p z + q = 0\), where \(p\) and \(q\) are real constants.
  1. Find \(\alpha ^ { 2 }\) and \(\alpha ^ { 3 }\) in the form \(a + b \mathrm { j }\). Hence show that \(p = - 8\) and \(q = 10\).
  2. Find the other two roots of the equation.
  3. Represent the three roots on an Argand diagram.
WJEC Further Unit 1 2023 June Q3
3. Given that \(5 - \mathrm { i }\) is a root of the equation \(x ^ { 4 } - 10 x ^ { 3 } + 10 x ^ { 2 } + 160 x - 416 = 0\),
  1. write down another root of the equation,
  2. find the remaining roots.
Edexcel CP1 2022 June Q1
1. $$\mathrm { f } ( \mathrm { z } ) = \mathrm { z } ^ { 3 } + a \mathrm { z } + 52 \quad \text { where } a \text { is a real constant }$$ Given that \(2 - 3 \mathrm { i }\) is a root of the equation \(\mathrm { f } ( \mathrm { z } ) = 0\)
  1. write down the other complex root.
  2. Hence
    1. solve completely \(\mathrm { f } ( \mathrm { z } ) = 0\)
    2. determine the value of \(a\)
  3. Show all the roots of the equation \(\mathrm { f } ( \mathrm { z } ) = 0\) on a single Argand diagram.
CAIE P3 2019 June Q5
5 Throughout this question the use of a calculator is not permitted. It is given that the complex number \(- 1 + ( \sqrt { } 3 ) \mathrm { i }\) is a root of the equation $$k x ^ { 3 } + 5 x ^ { 2 } + 10 x + 4 = 0$$ where \(k\) is a real constant.
  1. Write down another root of the equation.
  2. Find the value of \(k\) and the third root of the equation.
SPS SPS ASFM 2020 May Q3
3. \section*{In this question you must show detailed reasoning.} You are given that \(\mathrm { f } ( z ) = 4 z ^ { 4 } - 12 z ^ { 3 } + 41 z ^ { 2 } - 128 z + 185\) and that \(2 + \mathrm { i }\) is a root of the equation \(\mathrm { f } ( z ) = 0\).
  1. Express \(\mathrm { f } ( z )\) as the product of two quadratic factors with integer coefficients.
  2. Solve \(\mathrm { f } ( z ) = 0\). Two loci on an Argand diagram are defined by \(C _ { 1 } = \left\{ z : | z | = r _ { 1 } \right\}\) and \(C _ { 2 } = \left\{ z : | z | = r _ { 2 } \right\}\) where \(r _ { 1 } > r _ { 2 }\). You are given that two of the points representing the roots of \(\mathrm { f } ( z ) = 0\) are on \(C _ { 1 }\) and two are on \(C _ { 2 } . R\) is the region on the Argand diagram between \(C _ { 1 }\) and \(C _ { 2 }\).
  3. Find the exact area of \(R\).
  4. \(\omega\) is the sum of all the roots of \(\mathrm { f } ( z ) = 0\). Determine whether or not the point on the Argand diagram which represents \(\omega\) lies in \(R\).
SPS SPS FM 2023 February Q8
8. In this question you must show detailed reasoning. The equation \(\mathrm { f } ( x ) = 0\), where \(\mathrm { f } ( x ) = x ^ { 4 } + 2 x ^ { 3 } + 2 x ^ { 2 } + 26 x + 169\), has a root \(x = 2 + 3 \mathrm { i }\).
  1. Express \(\mathrm { f } ( x )\) as a product of two quadratic factors.
  2. Hence write down all the roots of the equation \(\mathrm { f } ( x ) = 0\).
    [0pt] [BLANK PAGE]
SPS SPS FM Pure 2024 September Q6
6. $$\mathrm { f } ( z ) = 8 z ^ { 3 } + 12 z ^ { 2 } + 6 z + 65$$ Given that \(\frac { 1 } { 2 } - \mathrm { i } \sqrt { 3 }\) is a root of the equation \(\mathrm { f } ( z ) = 0\)
  1. write down the other complex root of the equation,
  2. use algebra to solve the equation \(\mathrm { f } ( z ) = 0\) completely.
  3. Show the roots of \(\mathrm { f } ( z )\) on a single Argand diagram.
  4. Show that the roots of \(\mathrm { f } ( z )\) form the vertices of an equilateral triangle in the complex plane.
    [0pt] [BLANK PAGE]
AQA Further AS Paper 1 2020 June Q2
2 Given that \(1 - \mathrm { i }\) is a root of the equation \(z ^ { 3 } - 3 z ^ { 2 } + 4 z - 2 = 0\), find the other two roots. Tick ( \(\checkmark\) ) one box. $$\begin{aligned} & - 1 + i \text { and } - 1
& 1 + i \text { and } 1
& - 1 + i \text { and } 1
& 1 + i \text { and } - 1 \end{aligned}$$ □


AQA Further Paper 1 2022 June Q5
5 It is given that \(z = - \frac { 3 } { 2 } + \mathrm { i } \frac { \sqrt { 11 } } { 2 }\) is a root of the equation $$z ^ { 4 } - 3 z ^ { 3 } - 5 z ^ { 2 } + k z + 40 = 0$$ where \(k\) is a real number.
5
  1. Find the other three roots.
    5
  2. Given that \(x \in \mathbb { R }\), solve $$x ^ { 4 } - 3 x ^ { 3 } - 5 x ^ { 2 } + k x + 40 < 0$$
OCR Further Pure Core AS 2019 June Q4
4 In this question you must show detailed reasoning. You are given that \(\mathrm { f } ( \mathrm { z } ) = 4 \mathrm { z } ^ { 4 } - 12 \mathrm { z } ^ { 3 } + 41 \mathrm { z } ^ { 2 } - 128 \mathrm { z } + 185\) and that \(2 + \mathrm { i }\) is a root of the equation \(f ( z ) = 0\).
  1. Express \(\mathrm { f } ( \mathrm { z } )\) as the product of two quadratic factors with integer coefficients.
  2. Solve \(f ( z ) = 0\). Two loci on an Argand diagram are defined by \(C _ { 1 } = \left\{ z : | z | = r _ { 1 } \right\}\) and \(C _ { 2 } = \left\{ z : | z | = r _ { 2 } \right\}\) where \(r _ { 1 } > r _ { 2 }\). You are given that two of the points representing the roots of \(\mathrm { f } ( \mathrm { z } ) = 0\) are on \(C _ { 1 }\) and two are on \(C _ { 2 } . R\) is the region on the Argand diagram between \(C _ { 1 }\) and \(C _ { 2 }\).
  3. Find the exact area of \(R\).
  4. \(\omega\) is the sum of all the roots of \(\mathrm { f } ( \mathrm { z } ) = 0\). Determine whether or not the point on the Argand diagram which represents \(\omega\) lies in \(R\).
OCR Further Pure Core AS 2021 November Q3
3 In this question you must show detailed reasoning.
The equation \(x ^ { 4 } - 7 x ^ { 3 } - 2 x ^ { 2 } + 218 x - 1428 = 0\) has a root \(3 - 5 i\).
Find the other three roots of this equation.
OCR FP1 AS 2021 June Q2
2 In this question you must show detailed reasoning. You are given that \(\mathrm { f } ( z ) = 4 z ^ { 4 } - 12 z ^ { 3 } + 41 z ^ { 2 } - 128 z + 185\) and that \(2 + \mathrm { i }\) is a root of the equation \(\mathrm { f } ( z ) = 0\).
  1. Express \(\mathrm { f } ( z )\) as the product of two quadratic factors with integer coefficients.
  2. Solve \(\mathrm { f } ( z ) = 0\). Two loci on an Argand diagram are defined by \(C _ { 1 } = \left\{ z : | z | = r _ { 1 } \right\}\) and \(C _ { 2 } = \left\{ z : | z | = r _ { 2 } \right\}\) where \(r _ { 1 } > r _ { 2 }\). You are given that two of the points representing the roots of \(\mathrm { f } ( z ) = 0\) are on \(C _ { 1 }\) and two are on \(C _ { 2 } \cdot R\) is the region on the Argand diagram between \(C _ { 1 }\) and \(C _ { 2 }\).
  3. Find the exact area of \(R\).
  4. \(\omega\) is the sum of all the roots of \(\mathrm { f } ( z ) = 0\). Determine whether or not the point on the Argand diagram which represents \(\omega\) lies in \(R\).
OCR Further Pure Core 1 2021 June Q2
2 In this question you must show detailed reasoning. You are given that \(x = 2 + 5 \mathrm { i }\) is a root of the equation \(x ^ { 3 } - 2 x ^ { 2 } + 21 x + 58 = 0\).
Solve the equation.