A-Level Maths
Courses
Papers
Questions
Search
Courses
UFM Pure
Sequences and series, recurrence and convergence
Q5
OCR FP1 Specimen — Question 5
Exam Board
OCR
Module
FP1 (Further Pure Mathematics 1)
Session
Specimen
Topic
Sequences and series, recurrence and convergence
5
Show that $$\frac { 1 } { 2 r - 1 } - \frac { 1 } { 2 r + 1 } = \frac { 2 } { 4 r ^ { 2 } - 1 }$$
Hence find an expression in terms of \(n\) for $$\frac { 2 } { 3 } + \frac { 2 } { 15 } + \frac { 2 } { 35 } + \ldots + \frac { 2 } { 4 n ^ { 2 } - 1 }$$
State the value of
(a) \(\quad \sum _ { r = 1 } ^ { \infty } \frac { 2 } { 4 r ^ { 2 } - 1 }\),
(b) \(\quad \sum _ { r = n + 1 } ^ { \infty } \frac { 2 } { 4 r ^ { 2 } - 1 }\).
This paper
(8 questions)
View full paper
Q1
Q2
Q3
Q4
Q5
Q6
Q7
Q8