OCR FP1 Specimen — Question 5

Exam BoardOCR
ModuleFP1 (Further Pure Mathematics 1)
SessionSpecimen
TopicSequences and series, recurrence and convergence

5
  1. Show that $$\frac { 1 } { 2 r - 1 } - \frac { 1 } { 2 r + 1 } = \frac { 2 } { 4 r ^ { 2 } - 1 }$$
  2. Hence find an expression in terms of \(n\) for $$\frac { 2 } { 3 } + \frac { 2 } { 15 } + \frac { 2 } { 35 } + \ldots + \frac { 2 } { 4 n ^ { 2 } - 1 }$$
  3. State the value of
    (a) \(\quad \sum _ { r = 1 } ^ { \infty } \frac { 2 } { 4 r ^ { 2 } - 1 }\),
    (b) \(\quad \sum _ { r = n + 1 } ^ { \infty } \frac { 2 } { 4 r ^ { 2 } - 1 }\).