A-Level Maths
Courses
Papers
Questions
Search
Courses
LFM Pure
Linear transformations
Q9
OCR FP1 2007 June — Question 9
Exam Board
OCR
Module
FP1 (Further Pure Mathematics 1)
Year
2007
Session
June
Topic
Linear transformations
9
Write down the matrix, \(\mathbf { A }\), that represents an enlargement, centre ( 0,0 ), with scale factor \(\sqrt { 2 }\).
The matrix \(\mathbf { B }\) is given by \(\mathbf { B } = \left( \begin{array} { r r } \frac { 1 } { 2 } \sqrt { 2 } & \frac { 1 } { 2 } \sqrt { 2 }
- \frac { 1 } { 2 } \sqrt { 2 } & \frac { 1 } { 2 } \sqrt { 2 } \end{array} \right)\). Describe fully the geometrical transformation represented by \(\mathbf { B }\).
Given that \(\mathbf { C } = \mathbf { A B }\), show that \(\mathbf { C } = \left( \begin{array} { r r } 1 & 1
- 1 & 1 \end{array} \right)\).
Draw a diagram showing the unit square and its image under the transformation represented by \(\mathbf { C }\).
Write down the determinant of \(\mathbf { C }\) and explain briefly how this value relates to the transformation represented by \(\mathbf { C }\).
This paper
(10 questions)
View full paper
Q1
Q2
Q3
Q4
Q5
Q6
Q7
Q8
Q9
Q10