A-Level Maths
Courses
Papers
Questions
Search
Courses
UFM Pure
Sequences and series, recurrence and convergence
Q5
OCR FP1 2007 June — Question 5
Exam Board
OCR
Module
FP1 (Further Pure Mathematics 1)
Year
2007
Session
June
Topic
Sequences and series, recurrence and convergence
5
Show that $$\frac { 1 } { r } - \frac { 1 } { r + 1 } = \frac { 1 } { r ( r + 1 ) }$$
Hence find an expression, in terms of \(n\), for $$\frac { 1 } { 2 } + \frac { 1 } { 6 } + \frac { 1 } { 12 } + \ldots + \frac { 1 } { n ( n + 1 ) }$$
Hence find the value of \(\sum _ { r = n + 1 } ^ { \infty } \frac { 1 } { r ( r + 1 ) }\).
This paper
(10 questions)
View full paper
Q1
Q2
Q3
Q4
Q5
Q6
Q7
Q8
Q9
Q10