OCR FP1 2007 June — Question 7

Exam BoardOCR
ModuleFP1 (Further Pure Mathematics 1)
Year2007
SessionJune
Topic3x3 Matrices

7 The matrix \(\mathbf { M }\) is given by \(\mathbf { M } = \left( \begin{array} { l l l } a & 4 & 0
0 & a & 4
2 & 3 & 1 \end{array} \right)\).
  1. Find, in terms of \(a\), the determinant of \(\mathbf { M }\).
  2. In the case when \(a = 2\), state whether \(\mathbf { M }\) is singular or non-singular, justifying your answer.
  3. In the case when \(a = 4\), determine whether the simultaneous equations $$\begin{aligned} a x + 4 y \quad = & 6
    a y + 4 z & = 8
    2 x + 3 y + z & = 1 \end{aligned}$$ have any solutions.