1 The complex number \(a + \mathrm { i } b\) is denoted by \(z\). Given that \(| z | = 4\) and \(\arg z = \frac { 1 } { 3 } \pi\), find \(a\) and \(b\).
3 Use the standard results for \(\sum _ { r = 1 } ^ { n } r\) and \(\sum _ { r = 1 } ^ { n } r ^ { 2 }\) to show that, for all positive integers \(n\),
$$\sum _ { r = 1 } ^ { n } \left( 3 r ^ { 2 } - 3 r + 1 \right) = n ^ { 3 }$$
6 The cubic equation \(3 x ^ { 3 } - 9 x ^ { 2 } + 6 x + 2 = 0\) has roots \(\alpha , \beta\) and \(\gamma\).
(a) Write down the values of \(\alpha + \beta + \gamma\) and \(\alpha \beta + \beta \gamma + \gamma \alpha\).
(b) Find the value of \(\alpha ^ { 2 } + \beta ^ { 2 } + \gamma ^ { 2 }\).
(a) Use the substitution \(x = \frac { 1 } { u }\) to find a cubic equation in \(u\) with integer coefficients.
(b) Use your answer to part (ii) (a) to find the value of \(\frac { 1 } { \alpha } + \frac { 1 } { \beta } + \frac { 1 } { \gamma }\).
7 The matrix \(\mathbf { M }\) is given by \(\mathbf { M } = \left( \begin{array} { l l l } a & 4 & 0 0 & a & 4 2 & 3 & 1 \end{array} \right)\).
Find, in terms of \(a\), the determinant of \(\mathbf { M }\).
In the case when \(a = 2\), state whether \(\mathbf { M }\) is singular or non-singular, justifying your answer.
In the case when \(a = 4\), determine whether the simultaneous equations
$$\begin{aligned}
a x + 4 y \quad = & 6
a y + 4 z & = 8
2 x + 3 y + z & = 1
\end{aligned}$$
have any solutions.
8 The loci \(C _ { 1 }\) and \(C _ { 2 }\) are given by \(| z - 3 | = 3\) and arg \(( z - 1 ) = \frac { 1 } { 4 } \pi\) respectively.
Sketch, on a single Argand diagram, the loci \(C _ { 1 }\) and \(C _ { 2 }\).
Indicate, by shading, the region of the Argand diagram for which
$$| z - 3 | \leqslant 3 \text { and } 0 \leqslant \arg ( z - 1 ) \leqslant \frac { 1 } { 4 } \pi$$
Use an algebraic method to find the square roots of the complex number \(16 + 30 \mathrm { i }\).
Use your answers to part (i) to solve the equation \(z ^ { 2 } - 2 z - ( 15 + 30 \mathrm { i } ) = 0\), giving your answers in the form \(x + \mathrm { i } y\).