OCR FP1 (Further Pure Mathematics 1) 2007 June

Question 1
View details
1 The complex number \(a + \mathrm { i } b\) is denoted by \(z\). Given that \(| z | = 4\) and \(\arg z = \frac { 1 } { 3 } \pi\), find \(a\) and \(b\).
Question 2
View details
2 Prove by induction that, for \(n \geqslant 1 , \sum _ { r = 1 } ^ { n } r ^ { 3 } = \frac { 1 } { 4 } n ^ { 2 } ( n + 1 ) ^ { 2 }\).
Question 3
View details
3 Use the standard results for \(\sum _ { r = 1 } ^ { n } r\) and \(\sum _ { r = 1 } ^ { n } r ^ { 2 }\) to show that, for all positive integers \(n\), $$\sum _ { r = 1 } ^ { n } \left( 3 r ^ { 2 } - 3 r + 1 \right) = n ^ { 3 }$$
Question 4
View details
4 The matrix \(\mathbf { A }\) is given by \(\mathbf { A } = \left( \begin{array} { l l } 1 & 1
3 & 5 \end{array} \right)\).
  1. Find \(\mathbf { A } ^ { - 1 }\). The matrix \(\mathbf { B } ^ { - 1 }\) is given by \(\mathbf { B } ^ { - 1 } = \left( \begin{array} { r r } 1 & 1
    4 & - 1 \end{array} \right)\).
  2. Find \(( \mathbf { A B } ) ^ { - 1 }\).
Question 5
View details
5
  1. Show that $$\frac { 1 } { r } - \frac { 1 } { r + 1 } = \frac { 1 } { r ( r + 1 ) }$$
  2. Hence find an expression, in terms of \(n\), for $$\frac { 1 } { 2 } + \frac { 1 } { 6 } + \frac { 1 } { 12 } + \ldots + \frac { 1 } { n ( n + 1 ) }$$
  3. Hence find the value of \(\sum _ { r = n + 1 } ^ { \infty } \frac { 1 } { r ( r + 1 ) }\).
Question 6
View details
6 The cubic equation \(3 x ^ { 3 } - 9 x ^ { 2 } + 6 x + 2 = 0\) has roots \(\alpha , \beta\) and \(\gamma\).
  1. (a) Write down the values of \(\alpha + \beta + \gamma\) and \(\alpha \beta + \beta \gamma + \gamma \alpha\).
    (b) Find the value of \(\alpha ^ { 2 } + \beta ^ { 2 } + \gamma ^ { 2 }\).
  2. (a) Use the substitution \(x = \frac { 1 } { u }\) to find a cubic equation in \(u\) with integer coefficients.
    (b) Use your answer to part (ii) (a) to find the value of \(\frac { 1 } { \alpha } + \frac { 1 } { \beta } + \frac { 1 } { \gamma }\).
Question 7
View details
7 The matrix \(\mathbf { M }\) is given by \(\mathbf { M } = \left( \begin{array} { l l l } a & 4 & 0
0 & a & 4
2 & 3 & 1 \end{array} \right)\).
  1. Find, in terms of \(a\), the determinant of \(\mathbf { M }\).
  2. In the case when \(a = 2\), state whether \(\mathbf { M }\) is singular or non-singular, justifying your answer.
  3. In the case when \(a = 4\), determine whether the simultaneous equations $$\begin{aligned} a x + 4 y \quad = & 6
    a y + 4 z & = 8
    2 x + 3 y + z & = 1 \end{aligned}$$ have any solutions.
Question 8
View details
8 The loci \(C _ { 1 }\) and \(C _ { 2 }\) are given by \(| z - 3 | = 3\) and arg \(( z - 1 ) = \frac { 1 } { 4 } \pi\) respectively.
  1. Sketch, on a single Argand diagram, the loci \(C _ { 1 }\) and \(C _ { 2 }\).
  2. Indicate, by shading, the region of the Argand diagram for which $$| z - 3 | \leqslant 3 \text { and } 0 \leqslant \arg ( z - 1 ) \leqslant \frac { 1 } { 4 } \pi$$
Question 9
View details
9
  1. Write down the matrix, \(\mathbf { A }\), that represents an enlargement, centre ( 0,0 ), with scale factor \(\sqrt { 2 }\).
  2. The matrix \(\mathbf { B }\) is given by \(\mathbf { B } = \left( \begin{array} { r r } \frac { 1 } { 2 } \sqrt { 2 } & \frac { 1 } { 2 } \sqrt { 2 }
    - \frac { 1 } { 2 } \sqrt { 2 } & \frac { 1 } { 2 } \sqrt { 2 } \end{array} \right)\). Describe fully the geometrical transformation represented by \(\mathbf { B }\).
  3. Given that \(\mathbf { C } = \mathbf { A B }\), show that \(\mathbf { C } = \left( \begin{array} { r r } 1 & 1
    - 1 & 1 \end{array} \right)\).
  4. Draw a diagram showing the unit square and its image under the transformation represented by \(\mathbf { C }\).
  5. Write down the determinant of \(\mathbf { C }\) and explain briefly how this value relates to the transformation represented by \(\mathbf { C }\).
Question 10
View details
10
  1. Use an algebraic method to find the square roots of the complex number \(16 + 30 \mathrm { i }\).
  2. Use your answers to part (i) to solve the equation \(z ^ { 2 } - 2 z - ( 15 + 30 \mathrm { i } ) = 0\), giving your answers in the form \(x + \mathrm { i } y\).