1.
\begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{f6ab162c-8473-4464-ad62-87a359d85ab3-02_515_976_285_484}
\captionsetup{labelformat=empty}
\caption{Figure 1}
\end{figure}
A rough disc is rotating in a horizontal plane with constant angular speed 20 revolutions per minute about a fixed vertical axis through its centre \(O\). A particle \(P\) rests on the disc at a distance 0.4 m from \(O\), as shown in Figure 1. The coefficient of friction between \(P\) and the disc is \(\mu\). The particle \(P\) is on the point of slipping.
Find the value of \(\mu\).