OCR C2 2006 January — Question 4

Exam BoardOCR
ModuleC2 (Core Mathematics 2)
Year2006
SessionJanuary
TopicRadians, Arc Length and Sector Area

4
\includegraphics[max width=\textwidth, alt={}, center]{58680cd3-8744-42ee-83d4-35056592b2d0-2_647_797_1323_680} The diagram shows a sector \(O A B\) of a circle with centre \(O\). The angle \(A O B\) is 1.8 radians. The points \(C\) and \(D\) lie on \(O A\) and \(O B\) respectively. It is given that \(O A = O B = 20 \mathrm {~cm}\) and \(O C = O D = 15 \mathrm {~cm}\). The shaded region is bounded by the arcs \(A B\) and \(C D\) and by the lines \(C A\) and \(D B\).
  1. Find the perimeter of the shaded region.
  2. Find the area of the shaded region.