OCR S3 2011 January — Question 3

Exam BoardOCR
ModuleS3 (Statistics 3)
Year2011
SessionJanuary
TopicContinuous Probability Distributions and Random Variables
TypeSingle-piece PDF with k

3 The continuous random variable \(T\) has probability density function given by $$\mathrm { f } ( t ) = \begin{cases} 0 & t < 0 ,
\frac { a } { \mathrm { e } } & 0 \leqslant t < 2 ,
a \mathrm { e } ^ { - \frac { 1 } { 2 } t } & t \geqslant 2 , \end{cases}$$ where \(a\) is a positive constant.
  1. Show that \(a = \frac { 1 } { 4 } \mathrm { e }\).
  2. Find the upper quartile of \(T\).