CAIE P2 2021 November — Question 6

Exam BoardCAIE
ModuleP2 (Pure Mathematics 2)
Year2021
SessionNovember
TopicFactor & Remainder Theorem
TypeTwo polynomials, shared factor or separate conditions

6 The polynomials \(\mathrm { f } ( x )\) and \(\mathrm { g } ( x )\) are defined by $$\mathrm { f } ( x ) = 4 x ^ { 3 } + a x ^ { 2 } + 8 x + 15 \quad \text { and } \quad \mathrm { g } ( x ) = x ^ { 2 } + b x + 18$$ where \(a\) and \(b\) are constants.
  1. Given that \(( x + 3 )\) is a factor of \(\mathrm { f } ( x )\), find the value of \(a\).
  2. Given that the remainder is 40 when \(\mathrm { g } ( x )\) is divided by \(( x - 2 )\), find the value of \(b\).
  3. When \(a\) and \(b\) have these values, factorise \(\mathrm { f } ( x ) - \mathrm { g } ( x )\) completely.
  4. Hence solve the equation \(\mathrm { f } ( \operatorname { cosec } \theta ) - \mathrm { g } ( \operatorname { cosec } \theta ) = 0\) for \(0 < \theta < 2 \pi\).