CAIE P2 (Pure Mathematics 2) 2021 November

Question 1
View details
1 Find the exact value of \(\int _ { - 1 } ^ { 2 } \left( 4 \mathrm { e } ^ { 2 x } - 2 \mathrm { e } ^ { - x } \right) \mathrm { d } x\).
Question 2
View details
2
  1. Sketch, on the same diagram, the graphs of \(y = 3 x\) and \(y = | x - 3 |\).
  2. Find the coordinates of the point where the two graphs intersect.
  3. Deduce the solution of the inequality \(3 x < | x - 3 |\).
Question 3
View details
3
\includegraphics[max width=\textwidth, alt={}, center]{83d0697c-b133-47da-a745-dfdafa7dbf10-05_604_933_258_605} The variables \(x\) and \(y\) satisfy the equation \(a ^ { y } = k x\), where \(a\) and \(k\) are constants. The graph of \(y\) against \(\ln x\) is a straight line passing through the points \(( 1.03,6.36 )\) and \(( 2.58,9.00 )\), as shown in the diagram. Find the values of \(a\) and \(k\), giving each value correct to 2 significant figures.
Question 4
View details
4 The curve with equation \(y = x \mathrm { e } ^ { 2 x } + 5 \mathrm { e } ^ { - x }\) has a minimum point \(M\).
  1. Show that the \(x\)-coordinate of \(M\) satisfies the equation \(x = \frac { 1 } { 3 } \ln 5 - \frac { 1 } { 3 } \ln ( 1 + 2 x )\).
  2. Use an iterative formula, based on the equation in part (a), to find the \(x\)-coordinate of \(M\) correct to 3 significant figures. Use an initial value of 0.35 and give the result of each iteration to 5 significant figures.
Question 5
View details
5
\includegraphics[max width=\textwidth, alt={}, center]{83d0697c-b133-47da-a745-dfdafa7dbf10-08_663_433_260_854} The diagram shows the curve with parametric equations $$x = \ln ( 2 t + 3 ) , \quad y = \frac { 2 t - 3 } { 2 t + 3 } .$$ The curve crosses the \(y\)-axis at the point \(A\) and the \(x\)-axis at the point \(B\).
  1. Show that \(\frac { \mathrm { d } y } { \mathrm {~d} x } = \frac { 6 } { 2 t + 3 }\).
  2. Find the gradient of the curve at \(A\).
  3. Find the gradient of the curve at \(B\).
Question 6
View details
6 The polynomials \(\mathrm { f } ( x )\) and \(\mathrm { g } ( x )\) are defined by $$\mathrm { f } ( x ) = 4 x ^ { 3 } + a x ^ { 2 } + 8 x + 15 \quad \text { and } \quad \mathrm { g } ( x ) = x ^ { 2 } + b x + 18$$ where \(a\) and \(b\) are constants.
  1. Given that \(( x + 3 )\) is a factor of \(\mathrm { f } ( x )\), find the value of \(a\).
  2. Given that the remainder is 40 when \(\mathrm { g } ( x )\) is divided by \(( x - 2 )\), find the value of \(b\).
  3. When \(a\) and \(b\) have these values, factorise \(\mathrm { f } ( x ) - \mathrm { g } ( x )\) completely.
  4. Hence solve the equation \(\mathrm { f } ( \operatorname { cosec } \theta ) - \mathrm { g } ( \operatorname { cosec } \theta ) = 0\) for \(0 < \theta < 2 \pi\).
Question 7
View details
7
  1. By first expanding \(\cos ( 2 \theta + \theta )\), show that \(\cos 3 \theta \equiv 4 \cos ^ { 3 } \theta - 3 \cos \theta\).
  2. Find the exact value of \(2 \cos ^ { 3 } \left( \frac { 5 } { 18 } \pi \right) - \frac { 3 } { 2 } \cos \left( \frac { 5 } { 18 } \pi \right)\).
  3. Find \(\int \left( 12 \cos ^ { 3 } x - 4 \cos ^ { 3 } 3 x \right) \mathrm { d } x\).
    If you use the following lined page to complete the answer(s) to any question(s), the question number(s) must be clearly shown.