OCR MEI FP3 2010 June — Question 4

Exam BoardOCR MEI
ModuleFP3 (Further Pure Mathematics 3)
Year2010
SessionJune
TopicGroups

4 The group \(F = \{ \mathrm { p } , \mathrm { q } , \mathrm { r } , \mathrm { s } , \mathrm { t } , \mathrm { u } \}\) consists of the six functions defined by $$\mathrm { p } ( x ) = x \quad \mathrm { q } ( x ) = 1 - x \quad \mathrm { r } ( x ) = \frac { 1 } { x } \quad \mathrm {~s} ( x ) = \frac { x - 1 } { x } \quad \mathrm { t } ( x ) = \frac { x } { x - 1 } \quad \mathrm { u } ( x ) = \frac { 1 } { 1 - x } ,$$ the binary operation being composition of functions.
  1. Show that st \(= \mathrm { r }\) and find ts.
  2. Copy and complete the following composition table for \(F\).
    pqrstu
    ppqrstu
    qqpsrut
    rruptsq
    sstqurp
    ttsu
    uurt
  3. Give the inverse of each element of \(F\).
  4. List all the subgroups of \(F\). The group \(M\) consists of \(\left\{ 1 , - 1 , e ^ { \frac { \pi } { 3 } \mathrm { j } } , e ^ { - \frac { \pi } { 3 } \mathrm { j } } , e ^ { \frac { 2 \pi } { 3 } \mathrm { j } } , e ^ { - \frac { 2 \pi } { 3 } \mathrm { j } } \right\}\) with multiplication of complex numbers as its binary operation.
  5. Find the order of each element of \(M\). The group \(G\) consists of the positive integers between 1 and 18 inclusive, under multiplication modulo 19.
  6. Show that \(G\) is a cyclic group which can be generated by the element 2 .
  7. Explain why \(G\) has no subgroup which is isomorphic to \(F\).
  8. Find a subgroup of \(G\) which is isomorphic to \(M\).