OCR MEI FP3 2010 June — Question 1

Exam BoardOCR MEI
ModuleFP3 (Further Pure Mathematics 3)
Year2010
SessionJune
TopicVectors: Cross Product & Distances

1 Four points have coordinates $$\mathrm { A } ( 3,8,27 ) , \quad \mathrm { B } ( 5,9,25 ) , \quad \mathrm { C } ( 8,0,1 ) \quad \text { and } \quad \mathrm { D } ( 11 , p , p ) ,$$ where \(p\) is a constant.
  1. Find the perpendicular distance from C to the line AB .
  2. Find \(\overrightarrow { \mathrm { AB } } \times \overrightarrow { \mathrm { CD } }\) in terms of \(p\), and show that the shortest distance between the lines AB and CD is $$\frac { 21 | p - 5 | } { \sqrt { 17 p ^ { 2 } - 2 p + 26 } }$$
  3. Find, in terms of \(p\), the volume of the tetrahedron ABCD .
  4. State the value of \(p\) for which the lines AB and CD intersect, and find the coordinates of the point of intersection in this case. Option 2: Multi-variable calculus