1 Four points have coordinates
$$\mathrm { A } ( 3,8,27 ) , \quad \mathrm { B } ( 5,9,25 ) , \quad \mathrm { C } ( 8,0,1 ) \quad \text { and } \quad \mathrm { D } ( 11 , p , p ) ,$$
where \(p\) is a constant.
- Find the perpendicular distance from C to the line AB .
- Find \(\overrightarrow { \mathrm { AB } } \times \overrightarrow { \mathrm { CD } }\) in terms of \(p\), and show that the shortest distance between the lines AB and CD is
$$\frac { 21 | p - 5 | } { \sqrt { 17 p ^ { 2 } - 2 p + 26 } }$$
- Find, in terms of \(p\), the volume of the tetrahedron ABCD .
- State the value of \(p\) for which the lines AB and CD intersect, and find the coordinates of the point of intersection in this case.
Option 2: Multi-variable calculus