OCR MEI FP3 (Further Pure Mathematics 3) 2010 June

Question 1
View details
1 Four points have coordinates $$\mathrm { A } ( 3,8,27 ) , \quad \mathrm { B } ( 5,9,25 ) , \quad \mathrm { C } ( 8,0,1 ) \quad \text { and } \quad \mathrm { D } ( 11 , p , p ) ,$$ where \(p\) is a constant.
  1. Find the perpendicular distance from C to the line AB .
  2. Find \(\overrightarrow { \mathrm { AB } } \times \overrightarrow { \mathrm { CD } }\) in terms of \(p\), and show that the shortest distance between the lines AB and CD is $$\frac { 21 | p - 5 | } { \sqrt { 17 p ^ { 2 } - 2 p + 26 } }$$
  3. Find, in terms of \(p\), the volume of the tetrahedron ABCD .
  4. State the value of \(p\) for which the lines AB and CD intersect, and find the coordinates of the point of intersection in this case. Option 2: Multi-variable calculus
Question 2
View details
2 In this question, \(L\) is the straight line with equation \(\mathbf { r } = \left( \begin{array} { r } 2
1
- 1 \end{array} \right) + \lambda \left( \begin{array} { r } - 2
2
1 \end{array} \right)\), and \(\mathrm { g } ( x , y , z ) = \left( x y + z ^ { 2 } \right) \mathrm { e } ^ { x - 2 y }\).
  1. Find \(\frac { \partial \mathrm { g } } { \partial x } , \frac { \partial \mathrm {~g} } { \partial y }\) and \(\frac { \partial \mathrm { g } } { \partial z }\).
  2. Show that the normal to the surface \(\mathrm { g } ( x , y , z ) = 3\) at the point \(( 2,1 , - 1 )\) is the line \(L\). On the line \(L\), there are two points at which \(\mathrm { g } ( x , y , z ) = 0\).
  3. Show that one of these points is \(\mathrm { P } ( 0,3,0 )\), and find the coordinates of the other point Q .
  4. Show that, if \(x = - 2 \mu , y = 3 + 2 \mu , z = \mu\), and \(\mu\) is small, then $$\mathrm { g } ( x , y , z ) \approx - 6 \mu \mathrm { e } ^ { - 6 }$$ You are given that \(h\) is a small number.
  5. There is a point on \(L\), close to P , at which \(\mathrm { g } ( x , y , z ) = h\). Show that this point is approximately $$\left( \frac { 1 } { 3 } \mathrm { e } ^ { 6 } h , 3 - \frac { 1 } { 3 } \mathrm { e } ^ { 6 } h , - \frac { 1 } { 6 } \mathrm { e } ^ { 6 } h \right)$$
  6. Find the approximate coordinates of the point on \(L\), close to Q , at which \(\mathrm { g } ( x , y , z ) = h\).
Question 3
View details
3 A curve \(C\) has equation \(y = x ^ { \frac { 1 } { 2 } } - \frac { 1 } { 3 } x ^ { \frac { 3 } { 2 } }\), for \(x \geqslant 0\).
  1. Show that the arc of \(C\) for which \(0 \leqslant x \leqslant a\) has length \(a ^ { \frac { 1 } { 2 } } + \frac { 1 } { 3 } a ^ { \frac { 3 } { 2 } }\).
  2. Find the area of the surface generated when the arc of \(C\) for which \(0 \leqslant x \leqslant 3\) is rotated through \(2 \pi\) radians about the \(x\)-axis.
  3. Find the coordinates of the centre of curvature corresponding to the point \(\left( 4 , - \frac { 2 } { 3 } \right)\) on \(C\). The curve \(C\) is one member of the family of curves defined by $$y = p ^ { 2 } x ^ { \frac { 1 } { 2 } } - \frac { 1 } { 3 } p ^ { 3 } x ^ { \frac { 3 } { 2 } } \quad ( \text { for } x \geqslant 0 )$$ where \(p\) is a parameter (and \(p > 0\) ).
  4. Find the equation of the envelope of this family of curves.
Question 4
View details
4 The group \(F = \{ \mathrm { p } , \mathrm { q } , \mathrm { r } , \mathrm { s } , \mathrm { t } , \mathrm { u } \}\) consists of the six functions defined by $$\mathrm { p } ( x ) = x \quad \mathrm { q } ( x ) = 1 - x \quad \mathrm { r } ( x ) = \frac { 1 } { x } \quad \mathrm {~s} ( x ) = \frac { x - 1 } { x } \quad \mathrm { t } ( x ) = \frac { x } { x - 1 } \quad \mathrm { u } ( x ) = \frac { 1 } { 1 - x } ,$$ the binary operation being composition of functions.
  1. Show that st \(= \mathrm { r }\) and find ts.
  2. Copy and complete the following composition table for \(F\).
    pqrstu
    ppqrstu
    qqpsrut
    rruptsq
    sstqurp
    ttsu
    uurt
  3. Give the inverse of each element of \(F\).
  4. List all the subgroups of \(F\). The group \(M\) consists of \(\left\{ 1 , - 1 , e ^ { \frac { \pi } { 3 } \mathrm { j } } , e ^ { - \frac { \pi } { 3 } \mathrm { j } } , e ^ { \frac { 2 \pi } { 3 } \mathrm { j } } , e ^ { - \frac { 2 \pi } { 3 } \mathrm { j } } \right\}\) with multiplication of complex numbers as its binary operation.
  5. Find the order of each element of \(M\). The group \(G\) consists of the positive integers between 1 and 18 inclusive, under multiplication modulo 19.
  6. Show that \(G\) is a cyclic group which can be generated by the element 2 .
  7. Explain why \(G\) has no subgroup which is isomorphic to \(F\).
  8. Find a subgroup of \(G\) which is isomorphic to \(M\).