2 In this question, \(L\) is the straight line with equation \(\mathbf { r } = \left( \begin{array} { r } 2
1
- 1 \end{array} \right) + \lambda \left( \begin{array} { r } - 2
2
1 \end{array} \right)\), and \(\mathrm { g } ( x , y , z ) = \left( x y + z ^ { 2 } \right) \mathrm { e } ^ { x - 2 y }\).
- Find \(\frac { \partial \mathrm { g } } { \partial x } , \frac { \partial \mathrm {~g} } { \partial y }\) and \(\frac { \partial \mathrm { g } } { \partial z }\).
- Show that the normal to the surface \(\mathrm { g } ( x , y , z ) = 3\) at the point \(( 2,1 , - 1 )\) is the line \(L\).
On the line \(L\), there are two points at which \(\mathrm { g } ( x , y , z ) = 0\).
- Show that one of these points is \(\mathrm { P } ( 0,3,0 )\), and find the coordinates of the other point Q .
- Show that, if \(x = - 2 \mu , y = 3 + 2 \mu , z = \mu\), and \(\mu\) is small, then
$$\mathrm { g } ( x , y , z ) \approx - 6 \mu \mathrm { e } ^ { - 6 }$$
You are given that \(h\) is a small number.
- There is a point on \(L\), close to P , at which \(\mathrm { g } ( x , y , z ) = h\). Show that this point is approximately
$$\left( \frac { 1 } { 3 } \mathrm { e } ^ { 6 } h , 3 - \frac { 1 } { 3 } \mathrm { e } ^ { 6 } h , - \frac { 1 } { 6 } \mathrm { e } ^ { 6 } h \right)$$
- Find the approximate coordinates of the point on \(L\), close to Q , at which \(\mathrm { g } ( x , y , z ) = h\).