OCR FP3 Specimen — Question 8

Exam BoardOCR
ModuleFP3 (Further Pure Mathematics 3)
SessionSpecimen
TopicSecond order differential equations

8
  1. Find the value of the constant \(k\) such that \(y = k x ^ { 2 } \mathrm { e } ^ { - 2 x }\) is a particular integral of the differential equation $$\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } + 4 \frac { \mathrm {~d} y } { \mathrm {~d} x } + 4 y = 2 \mathrm { e } ^ { - 2 x }$$
  2. Find the solution of this differential equation for which \(y = 1\) and \(\frac { \mathrm { d } y } { \mathrm {~d} x } = 0\) when \(x = 0\).
  3. Use the differential equation to determine the value of \(\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } }\) when \(x = 0\). Hence prove that \(0 < y \leqslant 1\) for \(x \geqslant 0\).