OCR FP3 (Further Pure Mathematics 3) Specimen

Question 1
View details
1 Find the general solution of the differential equation $$\frac { \mathrm { d } y } { \mathrm {~d} x } - \frac { y } { x } = x ,$$ giving \(y\) in terms of \(x\) in your answer.
Question 2
View details
2 The set \(S = \{ a , b , c , d \}\) under the binary operation * forms a group \(G\) of order 4 with the following operation table.
\(*\)\(a\)\(b\)\(c\)\(d\)
\(a\)\(d\)\(a\)\(b\)\(c\)
\(b\)\(a\)\(b\)\(c\)\(d\)
\(c\)\(b\)\(c\)\(d\)\(a\)
\(d\)\(c\)\(d\)\(a\)\(b\)
  1. Find the order of each element of \(G\).
  2. Write down a proper subgroup of \(G\).
  3. Is the group \(G\) cyclic? Give a reason for your answer.
  4. State suitable values for each of \(a , b , c\) and \(d\) in the case where the operation \(*\) is multiplication of complex numbers.
Question 3
View details
3 The planes \(\Pi _ { 1 }\) and \(\Pi _ { 2 }\) have equations \(\mathbf { r } \cdot ( \mathbf { i } - 2 \mathbf { j } + 2 \mathbf { k } ) = 1\) and \(\mathbf { r } \cdot ( 2 \mathbf { i } + 2 \mathbf { j } - \mathbf { k } ) = 3\) respectively. Find
  1. the acute angle between \(\Pi _ { 1 }\) and \(\Pi _ { 2 }\), correct to the nearest degree,
  2. the equation of the line of intersection of \(\Pi _ { 1 }\) and \(\Pi _ { 2 }\), in the form \(\mathbf { r } = \mathbf { a } + t \mathbf { b }\).
Question 4
View details
4 In this question, give your answers exactly in polar form \(r \mathrm { e } ^ { \mathrm { i } \theta }\), where \(r > 0\) and \(- \pi < \theta \leqslant \pi\).
  1. Express \(4 ( ( \sqrt { } 3 ) - \mathrm { i } )\) in polar form.
  2. Find the cube roots of \(4 ( ( \sqrt { } 3 ) - \mathrm { i } )\) in polar form.
  3. Sketch an Argand diagram showing the positions of the cube roots found in part (ii). Hence, or otherwise, prove that the sum of these cube roots is zero.
Question 5
View details
5 The lines \(l _ { 1 }\) and \(l _ { 2 }\) have equations $$\frac { x - 5 } { 1 } = \frac { y - 1 } { - 1 } = \frac { z - 5 } { - 2 } \quad \text { and } \quad \frac { x - 1 } { - 4 } = \frac { y - 11 } { - 14 } = \frac { z - 2 } { 2 } .$$
  1. Find the exact value of the shortest distance between \(l _ { 1 }\) and \(l _ { 2 }\).
  2. Find an equation for the plane containing \(l _ { 1 }\) and parallel to \(l _ { 2 }\) in the form \(a x + b y + c z = d\).
Question 6
View details
6 The set \(S\) consists of all non-singular \(2 \times 2\) real matrices \(\mathbf { A }\) such that \(\mathbf { A Q } = \mathbf { Q A }\), where $$\mathbf { Q } = \left( \begin{array} { l l } 1 & 1
0 & 1 \end{array} \right)$$
  1. Prove that each matrix \(\mathbf { A }\) must be of the form \(\left( \begin{array} { l l } a & b
    0 & a \end{array} \right)\).
  2. State clearly the restriction on the value of \(a\) such that \(\left( \begin{array} { l l } a & b
    0 & a \end{array} \right)\) is in \(S\).
  3. Prove that \(S\) is a group under the operation of matrix multiplication. (You may assume that matrix multiplication is associative.)
Question 7
View details
7
  1. Prove that if \(z = \mathrm { e } ^ { \mathrm { i } \theta }\), then \(z ^ { n } + \frac { 1 } { z ^ { n } } = 2 \cos n \theta\).
  2. Express \(\cos ^ { 6 } \theta\) in terms of cosines of multiples of \(\theta\), and hence find the exact value of $$\int _ { 0 } ^ { \frac { 1 } { 3 } \pi } \cos ^ { 6 } \theta \mathrm {~d} \theta$$
Question 8
View details
8
  1. Find the value of the constant \(k\) such that \(y = k x ^ { 2 } \mathrm { e } ^ { - 2 x }\) is a particular integral of the differential equation $$\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } + 4 \frac { \mathrm {~d} y } { \mathrm {~d} x } + 4 y = 2 \mathrm { e } ^ { - 2 x }$$
  2. Find the solution of this differential equation for which \(y = 1\) and \(\frac { \mathrm { d } y } { \mathrm {~d} x } = 0\) when \(x = 0\).
  3. Use the differential equation to determine the value of \(\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } }\) when \(x = 0\). Hence prove that \(0 < y \leqslant 1\) for \(x \geqslant 0\).