OCR MEI FP2 (Further Pure Mathematics 2) 2006 June

Question 1
View details
1
  1. A curve has polar equation \(r = a ( \sqrt { 2 } + 2 \cos \theta )\) for \(- \frac { 3 } { 4 } \pi \leqslant \theta \leqslant \frac { 3 } { 4 } \pi\), where \(a\) is a positive constant.
    1. Sketch the curve.
    2. Find, in an exact form, the area of the region enclosed by the curve.
    1. Find the Maclaurin series for the function \(\mathrm { f } ( x ) = \tan \left( \frac { 1 } { 4 } \pi + x \right)\), up to the term in \(x ^ { 2 }\).
    2. Use the Maclaurin series to show that, when \(h\) is small, $$\int _ { - h } ^ { h } x ^ { 2 } \tan \left( \frac { 1 } { 4 } \pi + x \right) \mathrm { d } x \approx \frac { 2 } { 3 } h ^ { 3 } + \frac { 4 } { 5 } h ^ { 5 }$$
Question 2
View details
2
    1. Given that \(z = \cos \theta + \mathrm { j } \sin \theta\), express \(z ^ { n } + \frac { 1 } { z ^ { n } }\) and \(z ^ { n } - \frac { 1 } { z ^ { n } }\) in simplified trigonometric form.
    2. By considering \(\left( z - \frac { 1 } { z } \right) ^ { 4 } \left( z + \frac { 1 } { z } \right) ^ { 2 }\), find \(A , B , C\) and \(D\) such that $$\sin ^ { 4 } \theta \cos ^ { 2 } \theta = A \cos 6 \theta + B \cos 4 \theta + C \cos 2 \theta + D$$
    1. Find the modulus and argument of \(4 + 4 \mathrm { j }\).
    2. Find the fifth roots of \(4 + 4 \mathrm { j }\) in the form \(r \mathrm { e } ^ { \mathrm { j } \theta }\), where \(r > 0\) and \(- \pi < \theta \leqslant \pi\). Illustrate these fifth roots on an Argand diagram.
    3. Find integers \(p\) and \(q\) such that \(( p + q \mathrm { j } ) ^ { 5 } = 4 + 4 \mathrm { j }\).
Question 3
View details
3
  1. Find the inverse of the matrix \(\left( \begin{array} { r r r } 4 & 1 & k
    3 & 2 & 5
    8 & 5 & 13 \end{array} \right)\), where \(k \neq 5\).
  2. Solve the simultaneous equations $$\begin{aligned} & 4 x + y + 7 z = 12
    & 3 x + 2 y + 5 z = m
    & 8 x + 5 y + 13 z = 0 \end{aligned}$$ giving \(x , y\) and \(z\) in terms of \(m\).
  3. Find the value of \(p\) for which the simultaneous equations $$\begin{aligned} & 4 x + y + 5 z = 12
    & 3 x + 2 y + 5 z = p
    & 8 x + 5 y + 13 z = 0 \end{aligned}$$ have solutions, and find the general solution in this case.
Question 4
View details
4
  1. Starting from the definitions of \(\sinh x\) and \(\cosh x\) in terms of exponentials, prove that $$1 + 2 \sinh ^ { 2 } x = \cosh 2 x$$
  2. Solve the equation $$2 \cosh 2 x + \sinh x = 5 ,$$ giving the answers in an exact logarithmic form.
  3. Show that \(\int _ { 0 } ^ { \ln 3 } \sinh ^ { 2 } x \mathrm {~d} x = \frac { 10 } { 9 } - \frac { 1 } { 2 } \ln 3\).
  4. Find the exact value of \(\int _ { 3 } ^ { 5 } \sqrt { x ^ { 2 } - 9 } \mathrm {~d} x\).
Question 5
View details
5 A curve has parametric equations $$x = \theta - k \sin \theta , \quad y = 1 - \cos \theta ,$$ where \(k\) is a positive constant.
  1. For the case \(k = 1\), use your graphical calculator to sketch the curve. Describe its main features.
  2. Sketch the curve for a value of \(k\) between 0 and 1 . Describe briefly how the main features differ from those for the case \(k = 1\).
  3. For the case \(k = 2\) :
    (A) sketch the curve;
    (B) find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\) in terms of \(\theta\);
    (C) show that the width of each loop, measured parallel to the \(x\)-axis, is $$2 \sqrt { 3 } - \frac { 2 \pi } { 3 }$$
  4. Use your calculator to find, correct to one decimal place, the value of \(k\) for which successive loops just touch each other.