A-Level Maths
Courses
Papers
Questions
Search
Courses
LFM Pure
Reciprocal Trig & Identities
Q4
CAIE P1 Specimen — Question 4
Exam Board
CAIE
Module
P1 (Pure Mathematics 1)
Session
Specimen
Topic
Reciprocal Trig & Identities
4
Show that the equation \(\frac { 4 \cos \theta } { \tan \theta } + 15 = 0\) can be expressed as $$4 \sin ^ { 2 } \theta - 15 \sin \theta - 4 = 0$$
Hence solve the equation \(\frac { 4 \cos \theta } { \tan \theta } + 15 = 0\) for \(0 ^ { \circ } \leqslant \theta \leqslant 360 ^ { \circ }\).
This paper
(11 questions)
View full paper
Q1
Q2
Q3
Q4
Q5
Q6
Q7
Q8
Q9
Q10
Q11