CAIE P1 (Pure Mathematics 1) Specimen

Question 1
View details
1 In the expansion of \(\left( 1 - \frac { 2 x } { a } \right) ( a + x ) ^ { 5 }\), where \(a\) is a non-zero constant, show that the coefficient of \(x ^ { 2 }\) is zero.
Question 2
View details
2 The function f is such that \(\mathrm { f } ^ { \prime } ( x ) = 3 x ^ { 2 } - 7\) and \(\mathrm { f } ( 3 ) = 5\). Find \(\mathrm { f } ( x )\).
Question 3
View details
3 Solve the equation \(\sin ^ { - 1 } \left( 4 x ^ { 4 } + x ^ { 2 } \right) = \frac { 1 } { 6 } \pi\).
Question 4
View details
4
  1. Show that the equation \(\frac { 4 \cos \theta } { \tan \theta } + 15 = 0\) can be expressed as $$4 \sin ^ { 2 } \theta - 15 \sin \theta - 4 = 0$$
  2. Hence solve the equation \(\frac { 4 \cos \theta } { \tan \theta } + 15 = 0\) for \(0 ^ { \circ } \leqslant \theta \leqslant 360 ^ { \circ }\).
Question 5
View details
5 A curve has equation \(y = \frac { 8 } { x } + 2 x\).
  1. Find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\) and \(\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } }\).
  2. Find the coordinates of the stationary points and state, with a reason, the nature of each stationary point.
Question 6
View details
6 A curve has equation \(y = x ^ { 2 } - x + 3\) and a line has equation \(y = 3 x + a\), where \(a\) is a constant.
  1. Show that the \(x\)-coordinates of the points of intersection of the line and the curve are given by the equation \(x ^ { 2 } - 4 x + ( 3 - a ) = 0\).
  2. For the case where the line intersects the curve at two points, it is given that the \(x\)-coordinate of one of the points of intersection is - 1 . Find the \(x\)-coordinate of the other point of intersection.
  3. For the case where the line is a tangent to the curve at a point \(P\), find the value of \(a\) and the coordinates of \(P\).
Question 7
View details
7
\includegraphics[max width=\textwidth, alt={}, center]{097c5d00-9f92-4c3e-8056-7de09347fbb6-10_716_899_258_621} The diagram shows a circle with centre \(A\) and radius \(r\). Diameters \(C A D\) and \(B A E\) are perpendicular to each other. A larger circle has centre \(B\) and passes through \(C\) and \(D\).
  1. Show that the radius of the larger circle is \(r \sqrt { } 2\).
  2. Find the area of the shaded region in terms of \(r\).
Question 8
View details
8 The first term of a progression is \(4 x\) and the second term is \(x ^ { 2 }\).
  1. For the case where the progression is arithmetic with a common difference of 12 , find the possible values of \(x\) and the corresponding values of the third term.
  2. For the case where the progression is geometric with a sum to infinity of 8 , find the third term.
Question 9
View details
9
  1. Express \(- x ^ { 2 } + 6 x - 5\) in the form \(a ( x + b ) ^ { 2 } + c\), where \(a , b\) and \(c\) are constants.
    The function \(\mathrm { f } : x \mapsto - x ^ { 2 } + 6 x - 5\) is defined for \(x \geqslant m\), where \(m\) is a constant.
  2. State the smallest value of \(m\) for which f is one-one.
  3. For the case where \(m = 5\), find an expression for \(\mathrm { f } ^ { - 1 } ( x )\) and state the domain of \(\mathrm { f } ^ { - 1 }\).
    \includegraphics[max width=\textwidth, alt={}, center]{097c5d00-9f92-4c3e-8056-7de09347fbb6-16_771_636_260_756} The diagram shows a cuboid \(O A B C P Q R S\) with a horizontal base \(O A B C\) in which \(A B = 6 \mathrm {~cm}\) and \(O A = a \mathrm {~cm}\), where \(a\) is a constant. The height \(O P\) of the cuboid is 10 cm . The point \(T\) on \(B R\) is such that \(B T = 8 \mathrm {~cm}\), and \(M\) is the mid-point of \(A T\). Unit vectors \(\mathbf { i } , \mathbf { j }\) and \(\mathbf { k }\) are parallel to \(O A , O C\) and \(O P\) respectively.
Question 10
View details
  1. For the case where \(a = 2\), find the unit vector in the direction of \(\overrightarrow { P M }\).
  2. For the case where angle \(A T P = \cos ^ { - 1 } \left( \frac { 2 } { 7 } \right)\), find the value of \(a\).
Question 11
View details
11
\includegraphics[max width=\textwidth, alt={}, center]{097c5d00-9f92-4c3e-8056-7de09347fbb6-18_515_853_260_644} The diagram shows part of the curve \(y = ( 1 + 4 x ) ^ { \frac { 1 } { 2 } }\) and a point \(P ( 6,5 )\) lying on the curve. The line \(P Q\) intersects the \(x\)-axis at \(Q ( 8,0 )\).
  1. Show that \(P Q\) is a normal to the curve.
  2. Find, showing all necessary working, the exact volume of revolution obtained when the shaded region is rotated through \(360 ^ { \circ }\) about the \(x\)-axis.
    [0pt] [In part (ii) you may find it useful to apply the fact that the volume, \(V\), of a cone of base radius \(r\) and vertical height \(h\), is given by \(V = \frac { 1 } { 3 } \pi r ^ { 2 } h\).]