Edexcel F3 (Further Pure Mathematics 3) 2021 October

Question 1
View details
  1. The curve \(C\) has equation
$$y = \frac { 1 } { 2 } \operatorname { arcosh } ( 2 x ) \quad \frac { 7 } { 2 } \leqslant x \leqslant 13$$ Using calculus, determine the exact length of the curve \(C\).
Give your answer in the form \(p \sqrt { q }\), where \(p\) and \(q\) are constants to be found.
Question 2
View details
2. Given that $$\cosh y = x \quad \text { and } \quad y < 0$$ use the definition of coshy in terms of exponential functions to prove that $$y = \ln \left( x - \sqrt { x ^ { 2 } - 1 } \right)$$
Question 3
View details
3. The ellipse \(E\) has equation $$\frac { x ^ { 2 } } { 64 } + \frac { y ^ { 2 } } { 36 } = 1$$ The line \(l\) is the normal to \(E\) at the point \(P ( 8 \cos \theta , 6 \sin \theta )\).
  1. Using calculus, show that an equation for \(l\) is $$4 x \sin \theta - 3 y \cos \theta = 14 \sin \theta \cos \theta$$ The line \(l\) meets the \(x\)-axis at the point \(A\) and meets the \(y\)-axis at the point \(B\).
    The point \(M\) is the midpoint of \(A B\).
  2. Determine a Cartesian equation for the locus of \(M\) as \(\theta\) varies, giving your answer in the form \(a x ^ { 2 } + b y ^ { 2 } = c\) where \(a , b\) and \(c\) are integers.
Question 4
View details
4. The matrix \(\mathbf { M }\) is given by $$\left( \begin{array} { r r r } 2 & 0 & - 1
k & 3 & 2
- 2 & 1 & k \end{array} \right)$$
  1. Show that \(\operatorname { det } \mathbf { M } = 5 k - 10\) Given that \(k \neq 2\)
  2. find \(\mathbf { M } ^ { - 1 }\) in terms of \(k\). The points \(O ( 0,0,0 ) , A ( 4 , - 8,3 ) , B ( - 2,5 , - 4 )\) and \(C ( 4 , - 6,8 )\) are the vertices of a tetrahedron \(T\). The transformation represented by matrix \(\mathbf { M }\) transforms \(T\) to a tetrahedron with volume 50
  3. Determine the possible values of \(k\).
Question 5
View details
  1. The skew lines \(l _ { 1 }\) and \(l _ { 2 }\) have equations
$$l _ { 1 } : \mathbf { r } = ( \mathbf { i } + 2 \mathbf { j } - 5 \mathbf { k } ) + \lambda ( 5 \mathbf { i } + \mathbf { j } )$$ and $$l _ { 2 } : \mathbf { r } = ( 2 \mathbf { i } - 4 \mathbf { j } + 4 \mathbf { k } ) + \mu ( 8 \mathbf { i } - 2 \mathbf { j } + 3 \mathbf { k } )$$ where \(\lambda\) and \(\mu\) are scalar parameters.
  1. Determine a vector that is perpendicular to both \(l _ { 1 }\) and \(l _ { 2 }\)
  2. Determine an equation of the plane parallel to \(l _ { 1 }\) that contains \(l _ { 2 }\)
    1. in the form \(\mathbf { r } = \mathbf { a } + s \mathbf { b } + t \mathbf { c }\)
    2. in the form r.n \(= p\)
  3. Determine the shortest distance between \(l _ { 1 }\) and \(l _ { 2 }\) Give your answer in simplest form.
Question 6
View details
6. $$I _ { n } = \int _ { 0 } ^ { \sqrt { \frac { \pi } { 2 } } } x ^ { n } \cos \left( x ^ { 2 } \right) \mathrm { d } x \quad n \geqslant 1$$
  1. Prove that, for \(n \geqslant 5\) $$I _ { n } = \frac { 1 } { 2 } \left( \frac { \pi } { 2 } \right) ^ { \frac { n - 1 } { 2 } } - \frac { 1 } { 4 } ( n - 1 ) ( n - 3 ) I _ { n - 4 }$$
  2. Hence, determine the exact value of \(I _ { 5 }\), giving your answer in its simplest form.
Question 7
View details
7. A hyperbola \(H\) has equation $$\frac { x ^ { 2 } } { a ^ { 2 } } - \frac { y ^ { 2 } } { 25 } = 1$$ where \(a\) is a positive constant.
The eccentricity of \(H\) is \(e\).
  1. Determine an expression for \(e ^ { 2 }\) in terms of \(a\). The line \(l\) is the directrix of \(H\) for which \(x > 0\)
    The points \(A\) and \(A ^ { \prime }\) are the points of intersection of \(l\) with the asymptotes of \(H\).
  2. Determine, in terms of \(e\), the length of the line segment \(A A ^ { \prime }\). The point \(F\) is the focus of \(H\) for which \(x < 0\)
    Given that the area of triangle \(A F A ^ { \prime }\) is \(\frac { 164 } { 3 }\)
  3. show that \(a\) is a solution of the equation $$30 a ^ { 3 } - 164 a ^ { 2 } + 375 a - 4100 = 0$$
  4. Hence, using algebra and making your reasoning clear, show that the only possible value of \(a\) is \(\frac { 20 } { 3 }\)
Question 8
View details
8. $$y = \arccos ( 2 \sqrt { x } )$$
  1. Determine \(\frac { \mathrm { d } y } { \mathrm {~d} x }\)
  2. Show that $$\int y \mathrm {~d} x = x \arccos ( 2 \sqrt { x } ) + \int \frac { \sqrt { x } } { \sqrt { 1 - 4 x } } \mathrm {~d} x$$
  3. Use the substitution \(\sqrt { x } = \frac { 1 } { 2 } \cos \theta\) to show that $$\int _ { 0 } ^ { \frac { 1 } { 8 } } \frac { \sqrt { x } } { \sqrt { 1 - 4 x } } \mathrm {~d} x = \frac { 1 } { 4 } \int _ { a } ^ { b } \cos ^ { 2 } \theta \mathrm {~d} \theta$$ where \(a\) and \(b\) are limits to be determined.
  4. Hence, determine the exact value of $$\int _ { 0 } ^ { \frac { 1 } { 8 } } \arccos ( 2 \sqrt { x } ) d x$$