Edexcel F3 2024 January — Question 7

Exam BoardEdexcel
ModuleF3 (Further Pure Mathematics 3)
Year2024
SessionJanuary
TopicHyperbolic functions

7.
  1. Show that \begin{figure}[h]
    \includegraphics[alt={},max width=\textwidth]{469976eb-f1a9-4bdc-8f52-64ab23856109-26_1088_691_251_676} \captionsetup{labelformat=empty} \caption{Figure 1}
    \end{figure} Figure 1 shows a sketch of part of the curve \(C\) with equation \(y = \mathrm { f } ( x )\) where $$\mathrm { f } ( x ) = \arccos ( \operatorname { sech } x ) + \operatorname { coth } x \quad x > 0$$ The point \(P\) is a minimum turning point of \(C\)
  2. Show that the \(x\) coordinate of \(P\) is \(\ln ( q + \sqrt { q } )\) where \(q = \frac { 1 } { 2 } ( 1 + \sqrt { k } )\) and \(k\) is an integer to be determined.