Edexcel F3 2024 January — Question 3

Exam BoardEdexcel
ModuleF3 (Further Pure Mathematics 3)
Year2024
SessionJanuary
TopicConic sections

  1. The ellipse \(E\) has equation
$$\frac { x ^ { 2 } } { 49 } + \frac { y ^ { 2 } } { b ^ { 2 } } = 1$$ where \(b\) is a constant and \(0 < b < 7\)
The eccentricity of the ellipse is \(e\)
  1. Write down, in terms of \(e\) only,
    1. the coordinates of the foci of \(E\)
    2. the equations of the directrices of \(E\) Given that
      • the point \(P ( x , y )\) lies on \(E\) where \(x > 0\)
  2. the point \(S\) is the focus of \(E\) on the positive \(x\)-axis
  3. the line \(l\) is the directrix of \(E\) which crosses the positive \(x\)-axis
  4. the point \(M\) lies on \(l\) such that the line through \(P\) and \(M\) is parallel to the \(x\)-axis
  5. determine an expression for
    1. \(P S ^ { 2 }\) in terms of \(e , x\) and \(y\)
    2. \(P M ^ { 2 }\) in terms of \(e\) and \(x\)
  6. Hence show that
  7. $$b ^ { 2 } = 49 \left( 1 - e ^ { 2 } \right)$$ Given that \(E\) crosses the \(y\)-axis at the points with coordinates \(( 0 , \pm 4 \sqrt { 3 } )\)
  8. determine the value of \(e\) Given that the \(x\) coordinate of \(P\) is \(\frac { 7 } { 2 }\)
  9. determine the area of triangle \(O P M\), where \(O\) is the origin.