- In this question you must show all stages of your working.
Solutions relying entirely on calculator technology are not acceptable.
- Show that
$$\int _ { 4 } ^ { 4 \sqrt { 3 } } \frac { 8 } { 16 + x ^ { 2 } } d x = p \pi$$
where \(p\) is a rational number to be determined.
- Determine the exact value of \(k\) for which
$$\int _ { \frac { 3 } { 4 } } ^ { k } \frac { 2 } { \sqrt { 9 - 4 x ^ { 2 } } } d x = \frac { \pi } { 12 }$$