Edexcel F3 2024 January — Question 4

Exam BoardEdexcel
ModuleF3 (Further Pure Mathematics 3)
Year2024
SessionJanuary
TopicInvariant lines and eigenvalues and vectors

4. $$\mathbf { M } = \left( \begin{array} { r r r } 0 & - 1 & 3
- 1 & 4 & - 1
3 & - 1 & 0 \end{array} \right)$$ Given that \(\left( \begin{array} { r } 1
- 2
1 \end{array} \right)\) is an eigenvector of \(\mathbf { M }\)
  1. determine its corresponding eigenvalue. Given that - 3 is an eigenvalue of \(\mathbf { M }\)
  2. determine a corresponding eigenvector. Hence, given that \(\left( \begin{array} { l } 1
    1
    1 \end{array} \right)\) is also an eigenvector of \(\mathbf { M }\)
  3. determine a diagonal matrix \(\mathbf { D }\) and an orthogonal matrix \(\mathbf { P }\) such that \(\mathbf { D } = \mathbf { P } ^ { \mathrm { T } } \mathbf { M P }\)