Edexcel F3 2022 January — Question 8

Exam BoardEdexcel
ModuleF3 (Further Pure Mathematics 3)
Year2022
SessionJanuary
TopicConic sections

8. The ellipse \(E\) has equation $$\frac { x ^ { 2 } } { 9 } + \frac { y ^ { 2 } } { 4 } = 1$$
  1. Determine the eccentricity of \(E\)
  2. Hence, for this ellipse, determine
    1. the coordinates of the foci,
    2. the equations of the directrices. The point \(P\) lies on \(E\) and has coordinates \(( 3 \cos \theta , 2 \sin \theta )\). The line \(l _ { 1 }\) is the tangent to \(E\) at the point \(P\)
  3. Using calculus, show that an equation for \(l _ { 1 }\) is $$2 x \cos \theta + 3 y \sin \theta = 6$$ The line \(l _ { 2 }\) passes through the origin and is perpendicular to \(l _ { 1 }\)
    The line \(l _ { 1 }\) intersects the line \(l _ { 2 }\) at the point \(Q\)
  4. Determine the coordinates of \(Q\)
  5. Show that, as \(\theta\) varies, the point \(Q\) lies on the curve with equation $$\left( x ^ { 2 } + y ^ { 2 } \right) ^ { 2 } = \alpha x ^ { 2 } + \beta y ^ { 2 }$$ where \(\alpha\) and \(\beta\) are constants to be determined.
    \includegraphics[max width=\textwidth, alt={}]{cfc4afbd-3353-4f9f-b954-cb5178ebcf6c-36_2817_1962_105_105}