Edexcel F3 2022 January — Question 4

Exam BoardEdexcel
ModuleF3 (Further Pure Mathematics 3)
Year2022
SessionJanuary
TopicInvariant lines and eigenvalues and vectors

4. $$\mathbf { M } = \left( \begin{array} { l l l } 6 & k & 2
k & 5 & 0
2 & 0 & 7 \end{array} \right)$$ where \(k\) is a constant. Given that 3 is an eigenvalue of \(\mathbf { M }\),
  1. determine the possible values of \(k\). Given that \(k < 0\)
  2. determine the other eigenvalues of \(\mathbf { M }\).
  3. Determine a normalised eigenvector corresponding to the eigenvalue 3