| Exam Board | Edexcel |
| Module | F3 (Further Pure Mathematics 3) |
| Year | 2022 |
| Session | January |
| Topic | Hyperbolic functions |
3. (a) Given that \(y = \operatorname { arsech } \left( \frac { x } { 2 } \right)\), where \(0 < x \leqslant 2\), show that
$$\frac { \mathrm { d } y } { \mathrm {~d} x } = \frac { p } { x \sqrt { q - x ^ { 2 } } }$$
where \(p\) and \(q\) are constants to be determined.
In part (b) solutions based entirely on calculator technology are not acceptable.
$$\mathrm { f } ( x ) = \operatorname { artanh } ( x ) + \operatorname { arsech } \left( \frac { x } { 2 } \right) \quad 0 < x \leqslant 1$$
(b) Determine, in simplest form, the exact value of \(x\) for which \(\mathrm { f } ^ { \prime } ( x ) = 0\)