Edexcel FP2 (Further Pure Mathematics 2) 2014 June

Question 1
View details
  1. (a) Express \(\frac { 2 } { 4 r ^ { 2 } - 1 }\) in partial fractions.
    (b) Hence use the method of differences to show that
$$\sum _ { r = 1 } ^ { n } \frac { 1 } { 4 r ^ { 2 } - 1 } = \frac { n } { 2 n + 1 }$$
Question 2
View details
2. Using algebra, find the set of values of \(x\) for which $$3 x - 5 < \frac { 2 } { x }$$
Question 3
View details
3. (a) Find the general solution of the differential equation $$\frac { \mathrm { d } y } { \mathrm {~d} x } + 2 y \tan x = \mathrm { e } ^ { 4 x } \cos ^ { 2 } x , \quad - \frac { \pi } { 2 } < x < \frac { \pi } { 2 }$$ giving your answer in the form \(y = \mathrm { f } ( x )\).
(b) Find the particular solution for which \(y = 1\) at \(x = 0\)
Question 4
View details
4. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{c9fff982-d38b-42ff-ab4e-08008439a95b-06_456_1273_262_388} \captionsetup{labelformat=empty} \caption{Figure 1}
\end{figure} Figure 1 shows the curve \(C\) with polar equation $$r = 2 \cos 2 \theta , \quad 0 \leqslant \theta \leqslant \frac { \pi } { 4 }$$ The line \(l\) is parallel to the initial line and is a tangent to \(C\). Find an equation of \(l\), giving your answer in the form \(r = \mathrm { f } ( \theta )\).
Question 5
View details
5. $$y \frac { \mathrm {~d} ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } + 2 \left( \frac { \mathrm {~d} y } { \mathrm {~d} x } \right) ^ { 2 } + 2 y = 0$$
  1. Find an expression for \(\frac { \mathrm { d } ^ { 3 } y } { \mathrm {~d} x ^ { 3 } }\) in terms of \(\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } , \frac { \mathrm {~d} y } { \mathrm {~d} x }\) and \(y\). Given that \(y = 2\) and \(\frac { \mathrm { d } y } { \mathrm {~d} x } = 0.5\) at \(x = 0\),
  2. find a series solution for \(y\) in ascending powers of \(x\), up to and including the term in \(x ^ { 3 }\).
    5. \(y \frac { \mathrm {~d} ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } + 2 \left( \frac { \mathrm {~d} y } { \mathrm {~d} x } \right) ^ { 2 } + 2 y = 0\)
  3. Find an expression for \(\frac { \mathrm { d } ^ { 3 } y } { \mathrm {~d} x ^ { 3 } }\) in terms of \(\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } , \frac { \mathrm {~d} y } { \mathrm {~d} x }\) and \(y\).
Question 6
View details
6. The transformation \(T\) maps points from the \(z\)-plane, where \(z = x + \mathrm { i } y\), to the \(w\)-plane, where \(w = u + \mathrm { i } v\). The transformation \(T\) is given by $$w = \frac { z } { i z + 1 } , \quad z \neq i$$ The transformation \(T\) maps the line \(l\) in the \(z\)-plane onto the line with equation \(v = - 1\) in the \(w\)-plane.
  1. Find a cartesian equation of \(l\) in terms of \(x\) and \(y\). The transformation \(T\) maps the line with equation \(y = \frac { 1 } { 2 }\) in the \(z\)-plane onto the curve \(C\) in the \(w\)-plane.
    1. Show that \(C\) is a circle with centre the origin.
    2. Write down a cartesian equation of \(C\) in terms of \(u\) and \(v\).
Question 7
View details
7. (a) Use de Moivre's theorem to show that $$\sin 5 \theta \equiv 16 \sin ^ { 5 } \theta - 20 \sin ^ { 3 } \theta + 5 \sin \theta$$ (b) Hence find the five distinct solutions of the equation $$16 x ^ { 5 } - 20 x ^ { 3 } + 5 x + \frac { 1 } { 2 } = 0$$ giving your answers to 3 decimal places where necessary.
(c) Use the identity given in (a) to find $$\int _ { 0 } ^ { \frac { \pi } { 4 } } \left( 4 \sin ^ { 5 } \theta - 5 \sin ^ { 3 } \theta \right) \mathrm { d } \theta$$ expressing your answer in the form \(a \sqrt { } 2 + b\), where \(a\) and \(b\) are rational numbers.
Question 8
View details
8. (a) Show that the substitution \(x = \mathrm { e } ^ { z }\) transforms the differential equation $$x ^ { 2 } \frac { \mathrm {~d} ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } + 2 x \frac { \mathrm {~d} y } { \mathrm {~d} x } - 2 y = 3 \ln x , \quad x > 0$$ into the equation $$\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} z ^ { 2 } } + \frac { \mathrm { d } y } { \mathrm {~d} z } - 2 y = 3 z$$ (b) Find the general solution of the differential equation (II).
(c) Hence obtain the general solution of the differential equation (I) giving your answer in the form \(y = \mathrm { f } ( x )\).
\(\square\)