| Exam Board | Edexcel |
| Module | FP1 (Further Pure Mathematics 1) |
| Topic | Sequences and series, recurrence and convergence |
6. (a) Use the standard results for \(\sum _ { r = 1 } ^ { n } r\) and for \(\sum _ { r = 1 } ^ { n } r ^ { 3 }\) to show that, for all positive integers \(n\),
$$\sum _ { r = 1 } ^ { n } r \left( 2 r ^ { 2 } - 6 \right) = \frac { 1 } { 2 } n ( n + 1 ) ( n + 3 ) ( n - 2 ) .$$
(b) Hence calculate the value of \(\sum _ { r = 10 } ^ { 50 } r \left( 2 r ^ { 2 } - 6 \right)\).