Edexcel FP1 — Question 6

Exam BoardEdexcel
ModuleFP1 (Further Pure Mathematics 1)
TopicSequences and series, recurrence and convergence

6. (a) Use the standard results for \(\sum _ { r = 1 } ^ { n } r\) and for \(\sum _ { r = 1 } ^ { n } r ^ { 3 }\) to show that, for all positive integers \(n\), $$\sum _ { r = 1 } ^ { n } r \left( 2 r ^ { 2 } - 6 \right) = \frac { 1 } { 2 } n ( n + 1 ) ( n + 3 ) ( n - 2 ) .$$ (b) Hence calculate the value of \(\sum _ { r = 10 } ^ { 50 } r \left( 2 r ^ { 2 } - 6 \right)\).