| Exam Board | Edexcel |
| Module | FP1 (Further Pure Mathematics 1) |
| Year | 2014 |
| Session | June |
| Topic | Proof by induction |
9. (a) Prove by induction that, for \(n \in \mathbb { Z } ^ { + }\),
$$\sum _ { r = 1 } ^ { n } ( r + 1 ) 2 ^ { r - 1 } = n 2 ^ { n }$$
(b) A sequence of numbers is defined by
$$\begin{gathered}
u _ { 1 } = 0 , \quad u _ { 2 } = 32 ,
u _ { n + 2 } = 6 u _ { n + 1 } - 8 u _ { n } \quad n \geqslant 1
\end{gathered}$$
Prove by induction that, for \(n \in \mathbb { Z } ^ { + }\),
$$u _ { n } = 4 ^ { n + 1 } - 2 ^ { n + 3 }$$