8. The rectangular hyperbola \(H\) has equation \(x y = c ^ { 2 }\), where \(c\) is a positive constant. The point \(P \left( c t , \frac { c } { t } \right) , t \neq 0\), is a general point on \(H\).
An equation for the tangent to \(H\) at \(P\) is given by
$$y = - \frac { 1 } { t ^ { 2 } } x + \frac { 2 c } { t }$$
The points \(A\) and \(B\) lie on \(H\).
The tangent to \(H\) at \(A\) and the tangent to \(H\) at \(B\) meet at the point \(\left( - \frac { 6 } { 7 } c , \frac { 12 } { 7 } c \right)\).
Find, in terms of \(c\), the coordinates of \(A\) and the coordinates of \(B\).