Edexcel FP1 2013 June — Question 6

Exam BoardEdexcel
ModuleFP1 (Further Pure Mathematics 1)
Year2013
SessionJune
TopicConic sections

6. A parabola \(C\) has equation \(y ^ { 2 } = 4 a x , \quad a > 0\) The points \(P \left( a p ^ { 2 } , 2 a p \right)\) and \(Q \left( a q ^ { 2 } , 2 a q \right)\) lie on \(C\), where \(p \neq 0 , q \neq 0 , p \neq q\).
  1. Show that an equation of the tangent to the parabola at \(P\) is $$p y - x = a p ^ { 2 }$$
  2. Write down the equation of the tangent at \(Q\). The tangent at \(P\) meets the tangent at \(Q\) at the point \(R\).
  3. Find, in terms of \(p\) and \(q\), the coordinates of \(R\), giving your answers in their simplest form. Given that \(R\) lies on the directrix of \(C\),
  4. find the value of \(p q\).