| Exam Board | Edexcel |
| Module | FP1 (Further Pure Mathematics 1) |
| Year | 2013 |
| Session | June |
| Topic | Sequences and series, recurrence and convergence |
5. (a) Use the standard results for \(\sum _ { r = 1 } ^ { n } r\) and \(\sum _ { r = 1 } ^ { n } r ^ { 2 }\) to show that
$$\sum _ { r = 1 } ^ { n } ( r + 2 ) ( r + 3 ) = \frac { 1 } { 3 } n \left( n ^ { 2 } + 9 n + 26 \right)$$
for all positive integers \(n\).
(b) Hence show that
$$\sum _ { r = n + 1 } ^ { 3 n } ( r + 2 ) ( r + 3 ) = \frac { 2 } { 3 } n \left( a n ^ { 2 } + b n + c \right)$$
where \(a\), \(b\) and \(c\) are integers to be found.