Edexcel F1 2023 January — Question 6

Exam BoardEdexcel
ModuleF1 (Further Pure Mathematics 1)
Year2023
SessionJanuary
TopicConic sections

  1. In this question you must show all stages of your working. Solutions relying entirely on calculator technology are not acceptable.
The rectangular hyperbola \(H\) has equation \(x y = 20\)
The point \(P \left( 2 t \sqrt { a } , \frac { 2 \sqrt { a } } { t } \right) , t \neq 0\), where \(a\) is a constant, is a general point on \(H\)
  1. State the value of \(a\)
  2. Show that the normal to \(H\) at the point \(P\) has equation $$t y - t ^ { 3 } x - 2 \sqrt { 5 } \left( 1 - t ^ { 4 } \right) = 0$$ The points \(A\) and \(B\) lie on \(H\)
    The point \(A\) has parameter \(t = c\) and the point \(B\) has parameter \(t = - \frac { 1 } { 2 c }\), where \(c\) is a constant. The normal to \(H\) at \(A\) meets \(H\) again at \(B\)
  3. Determine the possible values of \(C\)