- Given that
$$\mathbf { A } = \left( \begin{array} { r r r }
2 & - 1 & 3
- 2 & 3 & 0
\end{array} \right) \quad \text { and } \quad \mathbf { B } = \left( \begin{array} { r r }
1 & k
0 & - 3
2 k & 2
\end{array} \right)$$
where \(k\) is a non-zero constant,
- determine the matrix \(\mathbf { A B }\)
- determine the value of \(k\) for which \(\operatorname { det } ( \mathbf { A B } ) = 0\)